Какие ограничения имеет использование правила вант гоффа. Закон вант гоффа и его математическое выражение. Скорость химической реакции

ВАНТ-ГОФФА ПРАВИЛО. Почти все химические реакции при повышении температуры идут быстрее. Зависимость скорости реакции от температуры описывается уравнением Аррениуса:

k = A e –E a/RT , где k константа скорости реакции, А не зависящая от температуры константа (ее называют предэкспоненциальным множителем), Е а энергия активации, R газовая постоянная, Т абсолютная температура. В школьных учебниках зависимость скорости реакции от температуры определяют в соответствии с так называемым «правилом Вант-Гоффа», которое в 19 в. сформулировал голландский химик Якоб Вант-Гофф . Это чисто эмпирическое правило, т.е. правило, основанное не на теории, а выведенное из опытных данных. В соответствии с этим правилом, повышение температуры на 10° приводит к увеличению скорости в 24 раза. Математически эту зависимость можно выразить уравнением v 2 v 1 = g (T 2 T 1)/10 , где v 1 и v 2 скорости реакции при температурах Т 1 и Т 2 ; величина g называется температурным коэффициентом реакции. Например, если g = 2, то при Т 2 Т 1 = 50 о v 2 /v 1 = 2 5 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т 1 и Т 2 , а только от их разности.

Однако из уравнения Аррениуса следует, что температурный коэффициент реакции зависит как от энергии активации, так и от абсолютной температуры. Для данной реакции с определенным значением Е а ускорение при повышении температуры на 10° будет тем больше, чем ниже температура. Это почти очевидно и без расчетов: повышение температуры от 0 до 10° С должно сказаться на скорости реакции значительно сильнее, чем такое же повышение температуры, например, от 500 до 510° С.

С другой стороны, для данного температурного интервала ускорение реакции будет тем сильнее, чем больше ее энергия активации. Так, если энергия активации реакции мала, то такая реакция идет очень быстро, и при повышении температуры на 10° С ее скорость почти не изменяется. Для таких реакций температурный коэффициент намного меньше 2. Для реакций же с большой энергией активации, которые при невысоких температурах идут медленно, ускорение при повышении температуры на 10° С может значительно превысить 4-кратное.

Например, реакция диоксида углерода со щелочным раствором с образованием гидрокарбонат-иона (СО 2 + ОН® НСО 3 –) имеет энергию активации 38,2 кДж/моль, поэтому при повышении температуры, например, от 50 до 60° С эта реакция ускорится всего в 1,5 раза. В то же время реакция распада этилбромида на этилен и бромоводород (С 2 Н 5 Вr ® С 2 Н 4 + НВr) с энергией активации 218 кДж/моль ускорится при повышении температуры от 100 до 110 o С в 6,3 раза (правда, в этом интервале температур реакция идет очень медленно). Кинетика реакции атомов водорода с этаном H + C 2 H 6 ® H 2 + C 2 H 5 была изучены в широком температурном интервале – от 300 до 1100 К (27–827° С). Для этой реакции E а = 40,6 кДж/моль. Следовательно, повышение температуры на 10° вызовет увеличение скорости реакции в 1,7 раза в интервале 300–310 K и только в 1,04 раза в интервале 1090–1100 K. Так что при высоких температурах скорость этой реакции практически не зависит от температуры. А для реакции присоединения атома водорода к двойной связи H + C 2 H 4 ® C 2 H 5 энергия активации мала (E а = 3,4 кДж/моль, так что ее скорость слабо зависит от температуры в широком температурном интервале. И только при температурах намного ниже 0° С начинает сказываться наличие активационного барьера.

Подобных примеров можно привести множество. Очевидно, что правило Вант-Гоффа противоречит не только уравнению Аррениуса, но и многим экспериментальным данным. Откуда же оно взялось и почему нередко выполняется?

Если в приведенном выше математическом выражении для правила Вант-Гоффа подставить вместо скоростей v 1 и v 2 для данной реакции их зависимости от температуры, в соответствии с уравнением Аррениуса, то после сокращения предэкспоненциальных множителей получим следующее выражение: g = v T +10/v T = е –Е а/R (Т +10)/е –Е а/ = е (Е а/R ) . Логарифмироване этого уравнения дает: lng = (E а /R ), откуда Е а = R lng T (T + 10)/10 = 0,83lngT (T + 10). Энергия активации не является функцией температуры, эта зависимость нужна лишь для удобства последующего анализа. Последнее уравнение это уравнение параболы, в котором физический смысл имеют только положительные значения. Соответствующая диаграмма ограничена двумя ветвями параболы: при g = 2 получаем Е а = 0,58Т (Т + 10), при g = 4 получаем Е а = 1,16Т (Т + 10). К тем же формулам приходим и при использовании десятичных логарифмов. Соответствующие графики двух парабол, для значений g 2 и 4, приведены на рисунке. Их физический смысл заключается в том, что области выполнения правила Вант-Гоффа соответствует только область между параболами. Таким образом, существуют только определенные соотношения между энергией активации реакции и температурой ее проведения, при которых правило Вант-Гоффа выполняется. Ниже нижней ветви температурный коэффициент g < 2, тогда как выше верхней ветви g > 4.

Если посмотреть, какие реакции «укладываются» в указанную довольно узкую область, то окажется, что все эти реакции идут не слишком быстро и не слишком медленно, а с удобной для измерения (при данной температуре) скоростью. Скорость только таких реакций и могли изучать химики во времена Вант-Гоффа. Например, если энергия активации была невелика (меньше 50 кДж/моль), то такая реакция при комнатной температуре заканчивалась за 12 секунды; поэтому для изучения ее кинетики следовало значительно понизить температуру, чтобы реакция проходила не быстрее, чем за 1020 минут. Только в этом случае химики 19 в. успевали отбирать пробы по ходу реакции и анализировать изменение в них концентрации реагентов. Других способов изучения скорости реакции в то время не было. Если это не удавалось (например, водный раствор замерзал), то скорость такой реакции не изучали. Если же энергия активации реакции была велика и при комнатной температуре она шла слишком медленно (многие сутки, или даже недели), то температуру повышали, чтобы реакция шла с удобной для измерения скоростью. И здесь были свои ограничения – например, раствор мог закипеть, т.е. в любом случае исследователи фактически «подстраивали» изучаемую реакцию под область между двумя параболами.

Сейчас химики имеют возможность с помощью различных приборов экспериментально изучать и очень быстрые (идущие в микросекундной области), и очень медленные реакции, для которых температурный коэффициент может быть значительно меньше 2 или значительно больше 4. Поэтому правило Вант-Гоффа, которое, в отличие от уравнения Аррениуса , не имеет четкого физического смысла, представляет лишь чисто исторический интерес и в современной науке не используется. В подавляющем большинстве учебников и монографий по химической кинетике, а также в 5-томной Химической Энциклопедии это правило даже не упоминается. И, тем не менее, если изучаемая реакция идет с удобной для измерения скоростью, например, заканчивается за 3040 мин, а энергия активации ее еще не измерена, то для предварительной грубой оценки зависимости скорости такой реакции от температуры можно использовать правило Вант-Гоффа. Поэтому это правило приводится во всех школьных учебниках химии.

Илья Леенсон

ВАНТ-ГОФФА ПРАВИЛО. Почти все химические реакции при повышении температуры идут быстрее. Зависимость скорости реакции от температуры описывается уравнением Аррениуса:

где k - константа скорости реакции, А - не зависящая от температуры константа (ее называют предэкспоненциальным множителем), Еа - энергия активации, R - газовая постоянная, Т - абсолютная температура. В школьных учебниках зависимость скорости реакции от температуры определяют в соответствии с так называемым «правилом Вант-Гоффа», которое в 19 в. сформулировал голландский химик Якоб Вант-Гофф. Это чисто эмпирическое правило, т.е. правило, основанное не на теории, а выведенное из опытных данных. В соответствии с этим правилом, повышение температуры на 10° приводит к увеличению скорости в 2-4 раза. Математически эту зависимость можно выразить уравнением v2v1 = g (T2 - T1)/10, где v1 и v2 - скорости реакции при температурах Т1 и Т2; величина g называется температурным коэффициентом реакции. Например, если g = 2, то при Т2 - Т1 = 50о v2/v1 = 25 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т1 и Т2, а только от их разности.Однако из уравнения Аррениуса следует, что температурный коэффициент реакции зависит как от энергии активации, так и от абсолютной температуры. Для данной реакции с определенным значением Еа ускорение при повышении температуры на 10° будет тем больше, чем ниже температура. Это почти очевидно и без расчетов: повышение температуры от 0 до 10° С должно сказаться на скорости реакции значительно сильнее, чем такое же повышение температуры, например, от 500 до 510° С.

С другой стороны, для данного температурного интервала ускорение реакции будет тем сильнее, чем больше ее энергия активации. Так, если энергия активации реакции мала, то такая реакция идет очень быстро, и при повышении температуры на 10° С ее скорость почти не изменяется. Для таких реакций температурный коэффициент намного меньше 2. Для реакций же с большой энергией активации, которые при невысоких температурах идут медленно, ускорение при повышении температуры на 10° С может значительно превысить 4-кратное.Например, реакция диоксида углерода со щелочным раствором с образованием гидрокарбонат-иона (СО2 + ОН® НСО3-) имеет энергию активации 38,2 кДж/моль, поэтому при повышении температуры, например, от 50 до 60° С эта реакция ускорится всего в 1,5 раза. В то же время реакция распада этилбромида на этилен и бромоводород (С2Н5Вr ® С2Н4 + НВr) с энергией активации 218 кДж/моль ускорится при повышении температуры от 100 до 110oС в 6,3 раза (правда, в этом интервале температур реакция идет очень медленно). Кинетика реакции атомов водорода с этаном H + C2H6 ® H2 + C2H5 была изучены в широком температурном интервале - от 300 до 1100 К (27-827° С). Для этой реакции Eа = 40,6 кДж/моль. Следовательно, повышение температуры на 10° вызовет увеличение скорости реакции в 1,7 раза в интервале 300-310 K и только в 1,04 раза в интервале 1090-1100 K. Так что при высоких температурах скорость этой реакции практически не зависит от температуры. А для реакции присоединения атома водорода к двойной связи H + C2H4 ® C2H5 энергия активации мала (Eа = 3,4 кДж/моль, так что ее скорость слабо зависит от температуры в широком температурном интервале. И только при температурах намного ниже 0° С начинает сказываться наличие активационного барьера.

Подобных примеров можно привести множество. Очевидно, что правило Вант-Гоффа противоречит не только уравнению Аррениуса, но и многим экспериментальным данным. Откуда же оно взялось и почему нередко выполняется?Если в приведенном выше математическом выражении для правила Вант-Гоффа подставить вместо скоростей v1 и v2 для данной реакции их зависимости от температуры, в соответствии с уравнением Аррениуса, то после сокращения предэкспоненциальных множителей получим следующее выражение: g = vT +10/vT = е-Еа/R(Т+10)/е-Еа/RТ = е(Еа/R). Логарифмироване этого уравнения дает: lng = (Eа/R), откуда Еа = Rlng T(T + 10)/10 = 0,83lngT(T + 10). Энергия активации не является функцией температуры, эта зависимость нужна лишь для удобства последующего анализа. Последнее уравнение - это уравнение параболы, в котором физический смысл имеют только положительные значения. Соответствующая диаграмма ограничена двумя ветвями параболы: при g = 2 получаем Еа = 0,58Т(Т + 10), при g = 4 получаем Еа = 1,16Т(Т + 10). К тем же формулам приходим и при использовании десятичных логарифмов. Соответствующие графики двух парабол, для значений g 2 и 4, приведены на рисунке. Их физический смысл заключается в том, что области выполнения правила Вант-Гоффа соответствует только область между параболами. Таким образом, существуют только определенные соотношения между энергией активации реакции и температурой ее проведения, при которых правило Вант-Гоффа выполняется. Ниже нижней ветви температурный коэффициент g < 2, тогда как выше верхней ветви g > 4. Правило Вант-Гоффа: при повышении Т на скорость хим. реакции увеличивается в 2-4 раза. Математически это правило можно записать: , - температурный коэффициент хим. реакции. Правило Вант-Гоффа является приближённым и его обычно используют для приблизительно оценки скорости при изменении температуры. Более точным является уравнение Аррениуса, по которому:. Они могут быть вычислены по значению констант скорости при 2-х различных Т. При: (1). При: (2). Вычитая из (1) (2) получаем. Отсюда можно выразить А. Зная А, по уравнению (1) или (2) вычисляют В. Уравнение Аррениуса может быть получено т/д-им выводом из уравнения изобары (изохоры) хим. реакции. Опуская индексы, характеризующие условия протекания реакции, это уравнение записывается: , где и - константы скорости прямой и обратной реакции. Учитывая эти уравнения можно записать: . Представим тепловой эффект реакции Q как разность 2-х энергетических величин: . Тогда последнее уравнение можно записать в виде: . С точностью до некоторой постоянной величины можно записать: , . Опыт показывает что. Отбрасывая индексы, последнее уравнение записывается: (1), где К - константа скорости хим. реакции. Энергетическая величина Е в этом уравнение называется энергией активации. Полученное уравнение описывает зависимость К хим. реакции от температуры. Разделив переменные и проинтегрировав, получим:

Уравнение (2) по форме походит на уравнение Аррениуса, интегрируя (2) получим:

Уравнение используют либо для вычисления энергии активации по известным константам скорости при двух температурах, либо для вычисления константы скорости реакции при неизменной температуре, если известна энергия активации. Для большинства хим. реакций энергия активации определяется в пределах. Физический смысл энергии активации раскрывается в теории химической кинетики, её можно определить как некоторый избыток энергии по сравнению со средним значением для денных условий, которыми должны обладать молекулы чтобы вступить в хим. реакцию. Уравнение (2) чаще представляют в виде: . При этом называют предэкспоненциальным множителем. Связь энергии активации с тепловым эффектом можно проиллюстрировать с помощью представлению о энергетическом барьере, который разделяет начальное и конечное состояние системы. I и II - уровни энергии вещ-в исходных и продуктов реакции. - энергия активации прямой реакции. - энергия активации обратной реакции. Избыток энергии реагирующих молекул, названный энергией активации, необходим для преодоления отталкивания электронных облаков взаимодействующих молекул при их столкновении, и для разрыва старых связей молекул. Уравнение Аррениуса справедливо в области невысоких температур; при достаточно высоких температурах константа скорости перестаёт зависеть от температуры.

Зависимость скорости протекания химической реакции от температуры определяется правилом Вант-Гоффа.

Голландский химик Вант-Гофф Якоб Хендрик, основатель стереохимии, в 1901 г. стал первым лауреатом Нобелевской премии по химии. Она была присуждена ему за открытие законов химической динамики и осмотического давления. Вант-Гофф ввёл представления о пространственном строении химических веществ. Он был уверен, что прогресса в фундаментальных и прикладных исследованиях по химии можно достичь, применяя физические и математические методы. Разработав учение о скорости реакций, он создал химическую кинетику.

Скорость химической реакции

Итак, кинетикой химических реакций называют учение о скорости протекания, о том, какое химической взаимодействие происходит в процессе реакций, и о зависимости реакций от различных факторов. У различных реакций скорость протекания различна.

Скорость химической реакции напрямую зависит от природы химических веществ, вступающих в реакцию. Некоторые вещества, такие как NаОН и НCl, способны реагировать за доли секунды. А некоторые химические реакции длятся годами. Пример такой реакции – ржавление железа.

Скорость реакции зависит также и от концентрации реагирующих веществ. Чем выше концентрация реагентов, тем выше и скорость реакции. В ходе реакции концентрация реагентов уменьшается, следовательно, замедляется и скорость реакции. То есть, в начальный момент скорость всегда выше, чем в любой последующий.

V = (C кон – С нач)/(t кон – t нач)

Концентрации реагентов определяют через определённые промежутки времени.

Правило Вант-Гоффа

Важным фактором, от которого зависит скорость протекания реакций, является температура.

Все молекулы сталкиваются с другими. Число соударений в секунду очень велико. Но, тем не менее, химические реакции не протекают с огромной скоростью. Так происходит, потому что в ходе реакции молекулы должны собраться в активированный комплекс. А образовать его могут только активные молекулы, кинетической энергии которых достаточно для этого. При малом количестве активных молекул реакция протекает медленно. При повышении температуры увеличивается число активных молекул. Следовательно, и скорость реакции будет выше.

Вант-Гофф считал, что скорость химической реакции – это закономерное изменение концентрации реагирующих веществ в единицу времени. Но оно не всегда является равномерным.

Правило Вант-Гоффа гласит, что при повышении температуры на каждые 10 о скорость химической реакции увеличивается в 2-4 раза .

Математически правило Вант-Гоффа выглядит так:

где V 2 t 2 , а V 1 – скорость протекания реакции при температуре t 1 ;

ɣ - температурный коэффициент скорости реакции. Этот коэффициент есть отношение констант скоростей при температуре t+10 и t .

Так, если ɣ = 3, а при 0 о С реакция длится 10 минут, то при 100 о С она будет продолжаться всего 0,01 сек. Резкое увеличение скорости протекания химической реакции объясняется увеличением количества активных молекул при повышении температуры.

Правило Вант-Гоффа применимо только в температурном диапазоне 10-400 о С. Не подчиняются правилу Вант-Гоффа и реакции, в которых участвуют большие молекулы.

Пример 1

Как изменится скорость гомогенной реакции при повышении температуры от 67 0 до 97 0 при температурном коэффициенте, равном четырём?

Решение

Запишем формулу закона Вант-Гоффа:

Подставим известные данные: =4 30/10 =4 3 = 64, где t 2 -конечная температура (97 0), а t 1 -начальная температура (67 0). Следовательно при повышении температуры от 67 0 до 97 0 скорость гомогенной реакции увеличится в 64 раза.

Пример 2

Рассчитайте, чему равен температурный коэффициент скорости, если известно, что при понижении температуры от 150 0 до 120 0 скорость реакции уменьшилась в 27 раз.

Решение

Запишем формулу закона Вант-Гоффа

и выразим из неё :

. Подставим данные = =3,

где t 2 =120, t 1 =150 (температура понижается), а отношение конечной скорости к начальной, т. к. при уменьшении температуры скорость уменьшается.

СОВЕТ: помните, что значение не должно выходить за пределы 2-4

1.2.3 Задачи с использованием закона объёмных отношений

Формулировка закона: если в реакцию вступают газообразные вещества и такие же вещества образуются в результате реакции, то их обёмы относятся друг к другу как небольшие целые числа, равные стехиометрическим коэффициентам в уравнении реакции перед формулами этих веществ. Например, для гомогенной реакции aA + bB = cC + dD формула будет выглядеть следующим образом:

.

Этот закон относится к основным законам химии и может быть использован в химической кинетике применительно к концентрации.

Пример 1

Реакция идет по уравнению 2Н 2(г) +O 2(г) =2Н 2 O (г) . Концентрации исходных веществ до начала реакции были [Н 2 ]=0,06 моль/л, =0,02 моль/л. вычислите концентрации этих веществ в момент, когда [Н 2 O]=0,01 моль/л.

Решение

В этой реакции Н 2(г) и O 2(г) относятся к исходным веществам, концентрация которых с течением времени уменьшается по мере того, как эти вещества расходуются, а Н 2 O (г) – к продуктам реакции, концентрация которых с течением времени увеличивается по мере того, как эти вещества образуются. Из закона объёмных отношений следует, что один объём О 2 взаимодействует с двумя объёмами Н 2 и при этом образуется два объёма Н 2 O , т. е. если получается 0,01 моль/л Н 2 O , то расходуется столько же Н 2 и в два раза меньше О 2 . В виде формулы это можно записать следующим образом:

: отсюда x=0,01 моль/л,

где обр -образованное и изр -израсходованное;

: отсюда x=0,005 моль/л.

Таким образом концентрации этих веществ в момент, когда [Н 2 O]=0,01 моль/л будет равна: = нач - изр =0,06-0,01=0,05моль/л и = нач - изр =0,02-0,005=0,015 моль/л (где нач- начальная концентрация веществ).

Пример 2

До начала реакции концентрации исходных веществ в гомогенной системе K+2L=3M+F были равны: =0,5 моль/л, [L]=0,12 моль/л. Найдите концентрации всех веществ на тот момент времени, когда концентрация L уменьшилась в три раза.

Решение

При уменьшении концентрации L в три раза, на данный момент времени она будет равна [L] = [L] нач / 3 = 0,12 / 3 =0,4 моль/л. Следовательно, в ходе реакции израсходовалось некоторое количество вещества L: [L] изр = [L] нач -[L] = 0,12 – 0,4 = 0,8 моль/л. В случае определения концентрации вещества К следует помнить, что вещество L не расходуется само по себе, а вступает в реакцию с К в соотношении 2 к 1, т. е. , отсюда х = 0,4 моль/л.

Значит, на данный момент времени концентрация вещества К будет равна [К] = [К] нач - [К] изр = 0,5 – 0,4.= 0,1 моль/л. Также по закону объёмных отношений можно найти и концентрации образованных веществ M иF :

, отсюда х = 0,12 моль/л.

Концентрацию вещества F можно найти таким же образом по концентрации K или L , а можно и полученной концентрации М :

, отсюда х = 0,4 моль/л

Поскольку не были даны исходные концентрации этих веществ, то мы можем считать, что начальная концентрация продуктов реакции равна нулю. Следовательно, на тот момент времени, когда концентрация L уменьшилась в три раза, концентрации других веществ будут равны: [К] = 0,1 моль/л;[M] = 0,12 моль/л; [F] =0,4 моль/л.

СОВЕТ: в формулу закона необходимо подставлять не начальные или конечные концентрации для исходных веществ, а именно израсходованные, прореагировавшие.

2 Химическое равновесие

В химических реакциях исходные вещества не всегда полностью превращаются в продукты реакции. Это происходит потому, что по мере накопления продуктов реакции могут создаваться условия для протекания обратимой реакции в противоположном направлении. Например, если смешать пары иода с водородом при температуре 200° С, то произойдет реакция:

Однако известно, что йодистый водород уже при нагревании до 180 °С начинает разлагаться на иод и водород:

.

Понятно, что в этих условиях не произойдет ни полного разложения НI, так как продукты реакции способны вновь реагировать между собой, ни полного образования йодистого водорода.

Основные понятия и законы

Обратимая химическая реакция – это реакция, в ходе которой происходят превращения как в прямом, так и в обратном направлениях, Первым, кто четко сформулировал представление об обратимости химических реакций, был К.Бертолле (1799). Участвуя в Египетской экспедиции Бонапарта, он обратил внимание на образование карбоната натрия в соляных озерах и пришел к заключению, что карбонат натрия образуется в результате взаимодействия между насыщенным раствором хлорида натрия и растворенным карбонатом кальция. Этот процесс обратен проводимой в лаборатории реакции между карбонатом натрия и растворенным хлоридом кальция с образованием карбоната кальция.

При написании уравнений обратимых реакций вместо знака равенства ставят две противоположно направленные стрелки. Уравнение рассмотренной выше обратимой реакции запишется следующим образом:

Реакцию, протекающую слева направо, называют прямой (константа скорости прямой реакции k 1), справа налево - обратной (константа скорости обратной реакции k 2).

В обратимых реакциях скорость прямой реакции вначале имеет максимальное значение, а затем уменьшается вследствие уменьшения концентрации исходных веществ, расходуемых на образование продуктов реакции. И наоборот, обратная реакция в начальный момент имеет минимальную скорость, которая увеличивается по мере увеличения концентрации продуктов реакции. Следовательно, скорость прямой реакции уменьшается, а обратной - увеличивается. Наконец, наступает такой момент, когда скорости прямой и обратной реакций становятся равными.

Рисунок 4 - График изменения скоростей прямой и обратной реакций во времени 1

V V 1 - скорость прямой реакции

V 2 - скорость обратной реакции

V 1 =V 2 – состояние химического

равновесия


Рисунок 5 - График изменения скоростей прямой и обратной реакций во времени 2

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V 1) равна скорости обратной реакции (V 2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются. Положение равновесия можно определить, зная скорости прямой и обратной реакций. Уравнение обратимой реакции имеет вид

согласно закону действующих масс, скорости прямой реакции u 1 и обратной u 2 соответственно запишутся следующим образом:

В равновесии скорости прямой и обратной реакций равны:

k 1 [A] m [B] n = k 2 [C] p [D] q .

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (K 1) и обратной (K 2) реакций. Преобразуем эту формулу и получим:

.

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции, т. е. численное значение константы равновесия характеризует тенденцию к осуществлению реакции или, другими словами, характеризует выход данной реакции. Так, при К >> 1 выход реакции велик (равновесие смещено в сторону прямой реакции), так как при этом

Понятно, что при К << 1 выход реакции мал (.равновесие смещено в сторону обратной реакции).


Похожая информация.


приближённое правило, согласно которому при повышении температуры на 10°С скорость химической реакции увеличивается примерно в 2-4 раза. Найдено Я. Х. Вант-Гоффом. См. Кинетика химическая.

  • - правило, сформулированное Вант-Гоффом и дополненное Аррениусом, которое в биологической модификации гласит, что скорость обмена веществ организмов при повышении температуры на 10° может быть...

    Экологический словарь

  • - показатель, обозначаемый «i», увеличения числа частиц растворённого вещества вследствие диссоциации молекулы на ионы: i= 1 +α, где α - степень диссоциации, k - число молекул ионов, образованных при диссоциации...

    Энциклопедический словарь по металлургии

  • - деревянные кружки, привязывающиеся к вантам. Через отверстия, имеющиеся у этих кружков, проходят снасти бегучего такелажа и тем самым предохраняются от трения о ванты...

    Морской словарь

  • - Якоб Хендрик, нидерландский химик, один из основателей стереохимии, физической химии. Сформулировал теорию пространственного расположения атомов в молекулах...

    Современная энциклопедия

  • - Го́ффа, Хоффа Альберт, немецкий хирург, ортопед. Автор руководств по ортопедической хирургии, переломам и вывихам, технике массажа, кинезотерапии, атласа ортопедических повязок и бандажей...

    Большой энциклопедический словарь

  • - "...вант: гибкий несущий элемент моста вантово-балочной системы, передающий усилия с балки жесткости на пилон..." Источник: " СП 35.13330.2011. Свод правил. Мосты и трубы. Актуализированная редакция СНиП 2.05...

    Официальная терминология

  • - нидерландский ученый; род. в 1852 г. в Роттердаме; учился в Дельфте, Лейдене, Бонне, Париже и Утрехте, был сперва профессором в Утрехте, потом в Амстердаме, а затем приглашен в Берлин...
  • - хирург-ортопед; род. в 1859 г.; с 1897 г. профессор Вюрцбургского университета...

    Энциклопедический словарь Брокгауза и Евфрона

  • - хирург-ортопед, род. в 1859 г., с 1897 г. профес...

    Энциклопедический словарь Брокгауза и Евфрона

  • - Якоб Хендрик, голландский химик, один из основателей современной физической химии и стереохимии. В 1871 окончил Политехническую школу в Делфте, после чего работал в Лейдене, Бонне и Париже...
  • - осмотического давления, определяет давление молекул растворённого вещества на полупроницаемую перепонку, отделяющую раствор от чистого растворителя и непроницаемую для растворённого вещества...

    Большая Советская энциклопедия

  • - ...

    Орфографический словарь-справочник

  • - Вант-Г"офф, -а: зак"он Вант-Г"...

    Русский орфографический словарь

  • - ВАНТ * vente f. Продажа. Он <Золя> выделяет их них <покупателей> три-четыре лица: одну графиню.. кумушку из провинции, являющуюся на каждую новую vente. Набл. 1883 12 1 224...

    Исторический словарь галлицизмов русского языка

  • - китайский титул, соотв. нашему «князь»...
  • - Деревянные блоки на купеческих кораблях, привязываемые к вантам...

    Словарь иностранных слов русского языка

"Вант-Гоффа правило" в книгах

Вант-Гофф Якоб Хендрик (1852-1911) Нидерландский физико-химик

Из книги Великие открытия и люди автора Мартьянова Людмила Михайловна

Вант-Гофф Якоб Хендрик (1852-1911) Нидерландский физико-химик Якоб Хендрик Вант-Гофф родился 30 августа 1852 года в Роттердаме (Нидерланды) в семье врача и знатока Шекспира Якоба Хендрика Вант-Гоффа и Алиды Якобы Колф третьим из семи детей. Он мечтал о карьере химика. Однако

Правило 13: Создавай открытое пространство. "Правило двух секунд"

Из книги 70 Правил Защитного Вождения автора Шаллер Роберт

Правило 13: Создавай открытое пространство. "Правило двух секунд" Обеспечивай собственную безопасность, активно создавая открытое пространство вокруг машины. Не позволяй им ограничивать твою свободу передвижения. Обилие свободного пространства дает лишнее время и

ЯКОБ ГЕНРИК ВАНТ-ГОФФ (1852–1911)

Из книги Великие химики. В 2-х т. Т. 2 автора Манолов Калоян

ЯКОБ ГЕНРИК ВАНТ-ГОФФ (1852–1911) Был теплый воскресный день, один из тех ясных весенних дней, которым так радуются после длинной, уже надоевшей зимы. Почки на деревьях набухали буквально на глазах, краски в саду волшебно менялись. Еще утром парк был серым и неприветливым,

ЯКОБ ВАНТ-ГОФФ

Из книги 100 великих нобелевских лауреатов автора Мусский Сергей Анатольевич

ЯКОБ ВАНТ-ГОФФ (1852- 1911)Вант- Гофф получил первую Нобелевскую премию по химии за открытие законов химической динамики и осмотического давления. Этой высокой наградой была отмечена важность молодой области науки -физической химии.Ученый, пользовавшийся всеобщим

Вант-Гофф Якоб Хендрик

БСЭ

Вант-Гоффа закон

Из книги Большая Советская Энциклопедия (ВА) автора БСЭ

Вант-Гоффа правило

Из книги Большая Советская Энциклопедия (ВА) автора БСЭ

Правило, як правило, як звичайно, як водиться, як заведено

Из книги Як ми говоримо автора Антоненко-Давидович Борис Дмитрович

Болезнь Гоффа

Из книги Большой справочник по массажу автора Васичкин Владимир Иванович

Болезнь Гоффа

Из книги Массаж. Уроки великого мастера автора Васичкин Владимир Иванович

Болезнь Гоффа Гиперплазия жировой ткани под наколенником характеризуется небольшой болью при движениях, болезненностью при пальпации, припухлостью по сторонам связки надколенника. Чаще это заболевание наблюдается у спортсменов. В последующем жировая ткань заменяется

Правило первого въезда и правило основной страны

Из книги Как объехать всю Европу за 300 евро автора Ризо Елена

Правило первого въезда и правило основной страны Сколько бы мнений по поводу так называемого правила первого въезда ни существовало, при путешествии по странам Шенгенской зоны все же стоит обратить внимание на некоторые серьезные ограничения.Итак, получив шенгенскую

автора Лопухин Александр

9. А говорят: "кого хочет он учить ведению? и кого вразумлять проповедью? отнятых от грудного молока, отлученных от сосцов матери? 10. Ибо все заповедь на заповедь, заповедь на заповедь, правило на правило, правило на правило, тут немного и там немного". На обличения Исаии

Из книги Толковая Библия. Том 5 автора Лопухин Александр

13. И стало у них словом Господа: заповедь на заповедь, заповедь на заповедь, правило на правило, правило на правило, тут немного, там немного, - так что они пойдут, и упадут навзничь, и разобьются, и попадут в сеть и будут уловлены. Словом Господа - правильнее: "со словом

Правило 100. Находите новое правило каждый день. Или хотя бы ищите его

Из книги Правила жизни [Как добиться успеха и стать счастливым] автора Темплар Ричард

Правило 100. Находите новое правило каждый день. Или хотя бы ищите его Вот мы и познакомились с 99 правилами успешной жизни. Наконец-то. Однако не думайте, что это все. Нет времени сидеть сложа руки; для того, кто принимает эти правила, нет перерывов на кофе. Как только вы

20. Типы фаз в металлических сплавах. Правило фаз; правило рычага

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

20. Типы фаз в металлических сплавах. Правило фаз; правило рычага Диаграмма состояния – это графическое изображение состояния любого сплава изучаемой системы в зависимости от его концентрации и температуры.Изучение любого сплава начинается с построения и анализа

Поделиться: