От чего зависит магнитный момент. Магнитный момент – фундаментальное свойство элементарных частиц. Расчет движения магнитного момента в неоднородном поле

При помещении во внешнее поле вещество может реагировать на это поле и само становиться источником магнитного поля (намагничиваться). Такие вещества называют магнетиками (сравните с поведением диэлектриков в электрическом поле). По магнитным свойствам магнетики разделяются на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Разные вещества намагничиваются по-разному. Магнитные свойства вещества определяются магнитными свойствами электронов и атомов. Большая часть веществ намагничивается слабо - это диамагнетики и парамагнетики. Некоторые вещества в обычных условиях (при умеренных температурах) способны намагничиваться очень сильно - это ферромагнетики.

У многих атомов результирующий магнитный момент равен нулю. Вещества, состоящие из таких атомов, и являются диамагиетиками. К ним, например, относятся азот, вода, медь, серебро, поваренная соль NaCl, диоксид кремния Si0 2 . Вещества же, у которых результирующий магнитный момент атома отличен от нуля, относятся к парамагнетикам. Примерами парамагнетиков являются: кислород, алюминий, платина.

В дальнейшем, говоря о магнитных свойствах, будем иметь в виду в основном диамагнетики и парамагнетики, а свойства небольшой группы ферромагнетиков иногда будем оговаривать особо.

Рассмотрим сначала поведение электронов вещества в магнитном поле. Будем считать для простоты, что электрон вращается в атоме вокруг ядра со скоростью v по орбите радиуса г. Такое движение, которое характеризуется орбитальным моментом импульса, по сути является круговым током, который характеризуется соответственно орбитальным магнитным момен-

том р орб. Исходя из периода обращения по окружности Т = - имеем, что

произвольную точку орбиты электрон в единицу времени пересекает -

раз. Поэтому круговой ток, равный прошедшему через точку в единицу времени заряду, дается выражением

Соответственно, орбитальный магнитный момент электрона по формуле (22.3) равен

Помимо орбитального момента импульса электрон имеет также собственный момент импульса, называемый спином . Спин описывается законами квантовой физики и является неотъемлемым свойством электрона - как масса и заряд (см. подробнее в разделе квантовой физики). Собственному моменту импульса соответствует собственный (спиновый) магнитный момент электрона р сп.

Магнитным моментом обладают и ядра атомов, однако эти моменты в тысячи раз меньше моментов электронов, и ими можно обычно пренебречь. В результате суммарный магнитный момент магнетика Р т равен векторной сумме орбитальных и спиновых магнитных моментов электронов магнетика:

Внешнее магнитное поле действует на ориентацию частиц вещества, имеющих магнитные моменты (и микротоков), в результате чего вещество намагничивается. Характеристикой этого процесса является вектор намагниченности J , равный отношению суммарного магнитного момента частиц магнетика к объему магнетика AV :

Намагниченность измеряется в А/м.

Если магнетик поместить во внешнее магнитное полеВ 0 , то в результате

намагничивания возникнет внутреннее поле микротоков В, так что результирующее поле будет равным

Рассмотрим магнетик в виде цилиндра с основанием площадью S и высотой /, помещенный в однородное внешнее магнитное ноле с индукцией В 0 . Такое поле может быть создано, например, с помощью соленоида. Ориентация микротоков во внешнем ноле становится упорядоченной. При этом поле микротоков диамагнетиков направлено противоположно внешнему нолю, а иоле микротоков парамагнетиков совпадает по направлению с внешним

В любом сечении цилиндра упорядоченность микротоков приводит к следующему эффекту (рис. 23.1). Упорядоченные микротоки внутри магнетика компенсируются соседними микротоками, а вдоль боковой поверхности текут нескомпенсированные поверхностные микротоки.

Направление этих нескомпенсированных микротоков параллельно (или антипараллельно) току, текущему в соленоиде, создающем внешнее ноле. В целом же они Рис. 23.1 дают суммарный внутренний ток Этот поверхностный ток создает внутреннее иоле микротоков B v причем связь тока и поля может быть описана формулой (22.21) для ноля соленоида:

Здесь магнитная проницаемость принята равной единице, поскольку роль среды учтена введением поверхностного тока; плотность намотки витков соленоида соответствует одному на всю длину соленоида /: п = 1 //. При этом магнитный момент поверхностного тока определяется намагниченностью всего магнетика:

Из двух последних формул с учетом определения намагниченности (23.4) следует

или в векторном виде

Тогда из формулы (23.5) имеем

Опыт исследования зависимости намагниченности от напряженности внешнего поля показывает, что обычно поле можно считать несильным и в разложении в ряд Тейлора достаточно ограничиться линейным членом:

где безразмерный коэффициент пропорциональности х - магнитная восприимчивость вещества. С учетом этого имеем

Сравнивая последнюю формулу для магнитной индукции с известной формулой (22.1), получим связь магнитной проницаемости и магнитной восприимчивости:

Отметим, что значения магнитной восприимчивости для диамагнетиков и парамагнетиков малы и составляют обычно по модулю 10 "-10 4 (для диамагнетиков) и 10 -8 - 10 3 (для парамагнетиков). При этом для диамагнетиков х х > 0 и р > 1.

; элементарным источником магнетизма считают замкнутый ток). Магнитными свойствами обладают элементарные частицы , атомные ядра , электронные оболочки атомов и молекул . Магнитный момент элементарных частиц (электронов , протонов , нейтронов и других), как показала квантовая механика , обусловлен существованием у них собственного механического момента - спина .

Магнитный момент
m → = I S n → {\displaystyle {\vec {m}}=IS{\vec {n}}}
Размерность L 2 I
Единицы измерения
СИ ⋅ 2
Примечания
векторная величина

Магнитный момент измеряется в ⋅ 2 , или в Вб *м, или Дж /Тл (СИ), либо эрг /Гс (СГС), 1 эрг/Гс = 10 −3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора .

Формулы для вычисления магнитного момента

В случае плоского контура с электрическим током магнитный момент вычисляется как

m = I S n {\displaystyle \mathbf {m} =IS\mathbf {n} } ,

где I {\displaystyle I} - сила тока в контуре, S {\displaystyle S} - площадь контура, n {\displaystyle \mathbf {n} } - единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика : если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

Для произвольного замкнутого контура магнитный момент находится из:

m = I 2 ∮ ⁡ [ r , d l ] {\displaystyle \mathbf {m} ={I \over 2}\oint [\mathbf {r} ,d\mathbf {l} ]} ,

где r {\displaystyle \mathbf {r} } - радиус-вектор , проведенный из начала координат до элемента длины контура d l {\displaystyle d\mathbf {l} } .

В общем случае произвольного распределения токов в среде:

m = 1 2 ∫ V [ r , j ] d V {\displaystyle \mathbf {m} ={1 \over 2}\int \limits _{V}[\mathbf {r} ,\mathbf {j} ]dV} ,

где j {\displaystyle \mathbf {j} } -

Можно доказать, что вращающий момент М, действующий на контур с током I в однородном поле, прямо пропорционален площади обтекаемой током, силе тока и индукции магнитного поля В. Кроме того, вращающий момент М зависит от положения контура относительно поля. Максимальный вращающий момент Миакс получается, когда плоскость контура параллельна линиям магнитной индукции (рис. 22.17), и выражается формулой

(Докажите это, используя формулу (22.6а) и рис. 22.17.) Если обозначить то получим

Величину , характеризующую магнитные свойства контура с током, которые определяют его поведение во внешнем магнитном поле, называют магнитным моментом этого контура. Магнитный момент контура измеряется произведением силы тока в нем на площадь, обтекаемую током:

Магнитный момент есть вектор, направление которого определяется правилом правого винта: если винт поворачивать по направлению тока в контуре, то поступательное движение винта покажет направление вектора (рис. 22.18, а). Зависимость вращающего момента М от ориентации контура выражается формулой

где а - угол между векторами и В. Из рис. 22.18, б видно, Что равновесие контура в магнитном поле возможно тогда, когда векторы В и Рмаг направлены по одной прямой. (Подумайте, в каком случае это равновесие будет устойчивым.)

Любых веществ. Источником формирования магнетизма, как утверждает классическая электромагнитная теория, являются микротоки, возникающие вследствие движения электрона по орбите. Магнитный момент - это непременное свойство всех без исключения ядер, атомных электронных оболочек и молекул.

Магнетизм, который присущ всем элементарным частицам, согласно обусловлен наличием у них механического момента, называемого спином (собственным механическим импульсом квантовой природы). Магнитные свойства атомного ядра складываются из спиновых импульсов составных частей ядра - протонов и нейтронов. Электронные оболочки (внутриатомные орбиты) тоже имеют магнитный момент, который составляет сумма магнитных моментов находящихся на ней электронов.

Иначе говоря, магнитные моменты элементарных частиц и обусловлены внутриатомным квантомеханическим эффектом, известным как спиновой импульс. Данный эффект аналогичен угловому моменту вращения вокруг собственной центральной оси. Спиновой импульс измеряется в постоянной Планка - основной константе квантовой теории.

Все нейтроны, электроны и протоны, из которых, собственно, и состоит атом, согласно Планку, обладают спином, равным ½ . В структуре атома электроны, вращаясь вокруг ядра, помимо спинового импульса, имеют еще и орбитальный угловой момент. Ядро, хоть и занимает статичное положение, тоже обладает угловым моментом, который создается эффектом ядерного спина.

Магнитное поле, которое генерирует атомный магнитный момент, определяется различными формами этого углового момента. Наиболее заметный вклад в создание вносит именно спиновой эффект. По принципу Паули, согласно которому два тождественных электрона не могут пребывать одновременно в одинаковом квантовом состоянии, связанные электроны сливаются, при этом их спиновые импульсы приобретают диаметрально противоположные проекции. В этом случае магнитный момент электрона сокращается, что уменьшает магнитные свойства всей структуры. В некоторых элементах, имеющих четное число электронов, этот момент уменьшается до нулевой отметки, и вещества перестают обладать магнитными свойствами. Таким образом, магнитный момент отдельных элементарных частиц оказывает непосредственное влияние на магнитные качества всей ядерно-атомной системы.

Ферромагнитные элементы с нечетным количеством электронов всегда будут обладать ненулевым магнетизмом за счет непарного электрона. В таких элементах соседние орбитали перекрываются, и все спиновые моменты непарных электронов принимают одинаковую ориентацию в пространстве, что приводит к достижению наименьшего энергетического состояния. Этот процесс называется обменным взаимодействием.

При таком выравнивании магнитных моментов ферромагнитных атомов возникает магнитное поле. А парамагнитные элементы, состоящие из атомов с дезориентированными магнитными моментами, не имеют собственного магнитного поля. Но если воздействовать на них внешним источником магнетизма, то магнитные моменты атомов выровняются, и эти элементы тоже приобретут магнитные свойства.

В предыдущем параграфе было выяснено, что действие магнитного поля на плоский контур с током определяется магнитным моментом контура , равным произведению силы тока в контуре на площадь контура (см. формулу (118.1)).

Единицей магнитного момента является ампер-метр в квадрате (). Чтобы дать представление об этой единице, укажем, что при силе тока 1 А магнитным моментом, равным 1 , обладает круговой контур радиуса 0,564 м () либо квадратный контур со стороной квадрата, равной 1 м. При силе тока 10 А магнитным моментом 1 обладает круговой контур радиуса 0,178 м () и т. д.

Электрон, движущийся с большой скоростью по круговой орбите, эквивалентен круговому току, сила которого равна произведению заряда электрона на частоту вращения электрона по орбите: . Если радиус орбиты равен , а скорость электрона – , то и, следовательно, . Магнитный момент, соответствующий этому току,

.

Магнитный момент является векторной величиной, направленной по нормали к контуру. Из двух возможных направлений нормали выбирается то, которое связано с направлением тока в контуре правилом правого винта (рис. 211). Вращение винта с правой нарезкой в направлении, совпадающем с направлением тока в контуре, вызывает продольное перемещение винта в направлении . Выбранная таким образом нормаль называется положительной. Направление вектора принимается совпадающим с направлением положительной нормали .

Рис. 211. Вращение головки винта в направлении тока вызывает перемещение винта в направлении вектора

Теперь мы можем уточнить определение направления магнитной индукции . За направление магнитной индукции принимается направление, в котором устанавливается под действием поля положительная нормаль к контуру с током, т. е. направление, в котором устанавливается вектор .

Единица магнитной индукции в СИ называется тесла (Тл) в честь сербского ученого Николы Теслы (1856-1943). Один тесла равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющий магнитный момент один ампер-метр в квадрате, действует максимальный вращающий момент, равный одному ньютон-метру.

Из формулы (118.2) следует, что

119.1. Круговой контур радиуса 5 см, по которому течет ток силы 0,01 А, испытывает в однородном магнитном поле максимальный вращающий момент, равный Н×м. Какова магнитная индукция этого поля?

119.2. Какой вращающий момент действует на тот же контур, если нормаль к контуру образует с направлением поля угол 30°?

119.3. Найдите магнитный момент тока, создаваемого электроном, движущимся по круговой орбите радиуса м со скоростью м/с. Заряд электрона равен Кл.

Поделиться: