Газодинамический анализ выхлопных газов. Газодинамика резонансных выхлопных труб. Измерение угла поворота и частоты вращения распределительного вала

К газодинамическому наддуву относят способы повышения плотности заряда на впуске за счёт использования:

· кинетической энергии воздуха, движущегося относительно приемного устройства, в котором она при торможении потока преобразуется в потенциальную энергию давления – скоростной наддув ;

· волновых процессов во впускных трубопроводах – .

В термодинамическом цикле двигателя без наддува начало процесса сжатия происходит при давлении p 0 , (равному атмосферному). В термодинамическом цикле поршневого двигателя с газодинамическим наддувом начало процесса сжатия происходит при давлении p k , вследствие повышения давления рабочего тела вне цилиндра от p 0 до p k . Это связано с преобразованием кинетической энергии и энергии волновых процессов вне цилиндра в потенциальную энергию давления.

Одним из источников энергии для повышения давления в начале сжатия может быть энергия набегающего потока воздуха, что имеет место при движении самолета, автомобиля и др. средств. Соответственно наддув в этих случаях называют скоростным.

Скоростной наддув основан на аэродинамических закономерностях преобразования скоростного напора потока воздуха в статическое давление. Конструктивно он реализуется в виде диффузорного воздухозаборного патрубка, направленного навстречу потоку воздуха при движении транспортного средства. Теоретически повышение давления Δp k =p k - p 0 зависит от скорости c н и плотности ρ 0 набегающего (двигающегося) потока воздуха

Скоростной наддув находит применение в основном на самолетах с поршневыми двигателями и спортивных автомобилях, где скорости движения больше 200 км/ч (56 м/с).

Следующие разновидности газодинамического наддува двигателей основаны на использовании инерционных и волновых процессов во впускной системе двигателя.

Инерционный или динамический наддув имеет место при относительно большой скорости движения свежего заряда в трубопроводе c тр. В этом случае уравнение (2.1) принимает вид

где ξ т – коэффициент, учитывающий сопротивления движению газа по длине и местные.

Реальная скорость c тр потока газа во впускных трубопроводах, во избежание повышенных аэродинамических потери и ухудшения наполнения цилиндров свежим зарядом, не должна превышать 30…50 м/с.

Периодичность процессов в цилиндрах поршневых двигателей является причиной колебательных динамических явлений в газовоздушных трактах. Эти явления могут быть использованы для существенного улучшения основных показателей двигателей (литровой мощности и экономичности.

Инерционные процессы всегда сопровождаются волновыми процессами (колебаниями давления), возникающими в результате периодического открытия и закрытия впускных клапанов системы газообмена, а также возвратно-поступательного движения поршней.



На начальном этапе впуска во впускном патрубке перед клапаном создается разрежение, и соответствующая волна разрежения, достигая противоположного конца индивидуального впускного трубопровода, отражается волной сжатия. Путем подбора длины и проходного сечения индивидуального трубопровода можно добиться прихода этой волны к цилиндру в наиболее благоприятный момент перед закрытием клапана, что позволит существенно увеличить коэффициент наполнения , а следовательно, крутящий момент M e двигателя.

На рис. 2.1. приведена схема настроенной впускной системы. Через впускной трубопровод, минуя дроссельную заслонку, воздух поступает в приемный ресивер, а из него– впускные трубопроводы настроенной длины к каждому из четырех цилиндров.

На практике это явление использовано в зарубежных двигателях (рис. 2.2), а также отечественных двигателях для легковых автомобилей с настроенными индивидуальными впускными трубопроводами (например, двигатели ЗМЗ), а также на дизеле 2Ч8,5/11 стационарного электрогенератора, имеющего один настроенный трубопровод на два цилиндра.

Наибольшая эффективность газодинамического наддува имеет место при длинных индивидуальных трубопроводах. Давление наддува зависит от согласования частоты вращения двигателя n , длины трубопровода L тр и угла

запаздывания закрытия впускного клапана (органа) φ a . Эти параметры связаны зависимостью

где – местная скорость звука; k =1,4 – показатель адиабаты; R = 0,287 кДж/(кг∙град.); T – средняя температура газа за период наддува.

Волновые и инерционные процессы могут обеспечивать заметное увеличение заряда в цилиндр при больших открытиях клапана или в виде повышения дозарядки в такте сжатия. Реализация эффективного газодинамического наддува возможна только для узкого диапазона частоты вращения двигателя. Сочетание фаз газораспределения и длины впускного трубопровода должно обеспечивать наибольший коэффициент наполнения. Такой подбор параметров называют настройкой впускной системы. Она позволяет увеличить мощность двигателя на 25…30%. Для сохранения эффективности газодинамического наддува в более широком диапазоне частот вращения коленчатого вала могут быть использованы различные способы, в частности:

· применение трубопровода с изменяемой длиной l тр (например, телескопического);

· переключение с короткого трубопровода на длинный;

· автоматическое регулирование фаз газораспределения и др.

Однако применение газодинамического наддува для форсирования двигателя связано с определенными проблемами. Во-первых, не всегда имеется возможность рационально скомпоновать достаточно протяженные настроенные впускные трубопроводы. Особенно это трудно сделать для низкооборотных двигателей, поскольку с уменьшением частоты вращения длина настроенных трубопроводов увеличивается. Во-вторых, фиксированная геометрия трубопроводов дает динамическую настройку лишь в некотором, вполне определенном диапазоне скоростного режима работы.

Для обеспечения эффекта в широком диапазоне применяют плавную или ступенчатую регулировку длины настроенного тракта при переходе с одного скоростного режима на другой. Ступенчатое регулирование с помощью специальных клапанов или поворотных заслонок считается более надежным и успешно применяется в автомобильных двигателях многих зарубежных фирм. Чаще всего используют регулирование с переключением на две настроенные длины трубопровода (рис. 2.3).

В положении закрытой заслонки соответствующему режиму до 4000 мин -1 , подача воздуха из впускного ресивера системы осуществляется по длинному пути (см. рис. 2.3). В результате (по сравнению с базовым вариантом двигателя без газодинамического наддува) улучшается протекание кривой крутящего момента по внешней скоростной характеристике (на некоторых частотах от 2500 до 3500 мин -1 крутящий момент возрастает в среднем на 10…12 %). С повышением частоты вращения n > 4000 мин -1 подача переключается на короткий путь и это позволяет увеличить мощность N e на номинальном режиме на 10 %.

Существуют и более сложные всережимные системы. Например, конструкции с трубопроводами, охватывающими цилиндрический ресивер с поворотным барабаном, имеющим окна для сообщения с трубопроводами (рис. 2.4). При повороте цилиндрического ресивера 1 против хода часовой стрелки длина трубопровода увеличивается и наоборот, при повороте по часовой стрелке – уменьшается. Однако реализация этих способов значительно усложняет конструкцию двигателя и снижает его надежность.

В многоцилиндровых двигателях с обычными трубопроводами эффективность газодинамического наддува снижается, что обусловлено взаимным влиянием процессов впуска в различные цилиндры. На автомобильных двигателях впускные системы «настраивают» обычно на режим максимального крутящего момента для повышения его запаса.

Эффект газодинамического наддува можно также получить соответствующей «настройкой» выпускной системы. Этот способ находит применение на двухтактных двигателях.

Для определения длины L тр и внутреннего диаметра d (или проходного сечения) настраиваемого трубопровода необходимо проводить расчеты с использованием численных методов газовой динамики, описывающих нестационарное течение, совместно с расчетом рабочего процесса в цилиндре. Критерием при этом является прирост мощности,

крутящего момента или снижение удельного расхода топлива. Эти расчеты весьма сложны. Более простые методы определения L тр и d основаны на результатах экспериментальных исследований.

В результате обработки большого числа экспериментальных данных для выбора внутреннего диаметра d настраиваемого трубопровода предлагается следующая зависимость:

где (μF щ) max – наибольшее значение эффективной площади проходного сечения щели впускного клапана. Длина L тр настраиваемого трубопровода может быть определена по формуле:

Заметим, что применение разветвленных настроенных систем типа общая труба – ресивер - индивидуальные трубы оказалось весьма эффективным в сочетании с турбонаддувом.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Григорьев Никита Игоревич. Газодинамика и теплообмен в выпускном трубопроводе поршневого ДВС: диссертация... кандидата технических наук: 01.04.14 / Григорьев Никита Игоревич;[Место защиты: Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б. Н. Ельцина" http://lib.urfu.ru/mod/data/view.php?d=51&rid=238321].- Екатеринбург, 2015.- 154 с.

Введение

ГЛАВА 1. Состояние вопроса и постановка задач исследования 13

1.1 Типы выхлопных систем 13

1.2 Экспериментальные исследования эффективности выпускных систем. 17

1.3 Расчетные исследования эффективности выпускных систем 27

1.4 Характеристики теплообменных процессов в выпускной системе поршневого ДВС 31

1.5 Выводы и постановка задач исследования 37

ГЛАВА 2. Методика исследования и описание экспериментальной установки 39

2.1 Выбор методики исследования газодинамики и теплообменных характеристик процесса выпуска поршневого ДВС 39

2.2 Конструктивное исполнение экспериментальной установки для исследования процесса выпуска в поршневом ДВС 46

2.3 Измерение угла поворота и частоты вращения распределительного вала 50

2.4 Определение мгновенного расхода 51

2.5 Измерение мгновенных локальных коэффициентов теплоотдачи 65

2.6 Замер избыточного давления потока в выпускном тракте 69

2.7 Система сбора данных 69

2.8 Выводы к главе 2 з

ГЛАВА 3. Газодинамика и расходные характеристики процесса выпуска 72

3.1 Газодинамика и расходные характеристики процесса выпуска в поршневом двигателе внутреннего сгорания без наддува 72

3.1.1 При трубопроводе с круглым поперечным сечением 72

3.1.2 Для трубопровода с квадратным поперечным сечением 76

3.1.3 С трубопроводом треугольного поперечного сечения 80

3.2 Газодинамика и расходные характеристики процесса выпуска поршневого двигателя внутреннего сгорания с наддувом 84

3.3 Заключение к главе 3 92

ГЛАВА 4. Мгновенная теплоотдача в выпускном канале поршневого двигателя внутреннего сгорания 94

4.1 Мгновенная локальная теплоотдача процесса выпуска поршневого двигателя внутреннего сгорания без наддува 94

4.1.1 С трубопроводом с круглого поперечного сечения 94

4.1.2 Для трубопровода с квадратным поперечным сечением 96

4.1.3 При трубопроводе с треугольным поперечным сечением 98

4.2 Мгновенная теплоотдача процесса выпуска поршневого двигателя внутреннего сгорания с наддувом 101

4.3 Выводы к главе 4 107

ГЛАВА 5. Стабилизация течения в выпускном канале поршневого двигателя внутреннего сгорания 108

5.1 Гашение пульсаций потока в выпускном канале поршневого ДВС с помощью постоянной и периодической эжекции 108

5.1.1 Подавление пульсаций потока в выпускном канале с помощью постоянной эжекции 108

5.1.2 Гашение пульсаций потока в выпускном канале путем периодической эжекции 112 5.2 Конструктивное и технологическое исполнение выпускного тракта с эжекцией 117

Заключение 120

Список литературы

Расчетные исследования эффективности выпускных систем

Выхлопная система поршневого ДВС служит для отвода из цилиндров двигателя отработавших газов и подвода их к турбине турбокомпрессора (в двигателях с наддувом) с целью преобразования оставшейся после рабочего процесса энергии в механическую работу на валу ТК. Выхлопные каналы выполняют общим трубопроводом, отлитым из серого или жаростойкого чугуна, или алюминия в случае наличия охлаждения, либо из отдельных чугунных патрубков. Для предохранения обслуживающего персонала от ожогов выхлопной трубопровод может охлаждаться водой или покрываться теплоизолирующим материалом. Теплоизолированные трубопроводы более предпочтительны для двигателей с газотурбинным наддувом так как в этом случае уменьшаются потери энергии выпускных газов. Так как при нагревании и остывании длина выпускного трубопровода изменяется, то перед турбиной устанавливают специальные компенсаторы. На больших двигателях компенсаторами соединяют также отдельные секции выпускных трубопроводов, которые по технологическим соображениям делают составными.

Сведения о параметрах газа перед турбиной турбокомпрессора в динамике в течение каждого рабочего цикла ДВС появились еще в 60-х годах . Известны также некоторые результаты исследований зависимости мгновенной температуры отработавших газов от нагрузки для четырехтактного двигателя на небольшом участке поворота коленвала, датированные тем же периодом времени . Однако ни в этом, ни в других источниках не присутствуют такие важные характеристики как локальная интенсивность теплоотдачи и скорость потока газа в выхлопном канале. У дизелей с наддувом могут быть три вида организации подвода газа из головки цилиндров к турбине : система постоянного давления газа перед турбиной, импульсная система и система наддува с преобразователем импульсов.

В системе постоянного давления газы из всех цилиндров выходят в общий выпускной коллектор большого объема, который выполняет роль ресивера и в значительной степени сглаживает пульсации давления (рисунок 1). Во время выпуска газа из цилиндра в выпускном патрубке образуется волна давления большой амплитуды. Недостатком такой системы является сильное снижение работоспособности газа при перетекании его из цилиндра через коллектор в турбину.

При такой организации выпуска газов из цилиндра и подвода их к сопловому аппарату турбины уменьшаются потери энергии, связанные с их внезапным расширением при истечении из цилиндра в трубопровод и двукратным преобразованием энергии: кинетической энергии вытекающих из цилиндра газов в потенциальную энергию их давления в трубопроводе, а последней снова в кинетическую энергию в сопловом аппарате в турбине, как это происходит в выпускной системе с постоянным давлением газа на входе в турбину. В результате этого при импульсной системе увеличивается располагаемая работа газов в турбине и уменьшается их давление во время выпуска, что позволяет уменьшить затраты мощности на осуществление газообмена в цилиндре поршневого двигателя.

Следует отметить, что при импульсном наддуве существенно ухудшаются условия преобразования энергии в турбине вследствие нестационарности потока, что ведет к снижению ее КПД. К тому же затрудняется определение расчетных параметров турбины из-за переменных давления и температуры газа перед турбиной и за ней, и раздельного подвода газа к ее сопловому аппарату. Кроме того, усложняется конструкция как самого двигателя, так и турбины турбокомпрессора из-за введения раздельных коллекторов. Вследствие этого ряд фирм при массовом производстве двигателей с газотурбинным наддувом применяет систему наддува с постоянным давлением перед турбиной.

Система наддува с преобразователем импульсов является промежуточной и сочетает выгоды от пульсаций давления в выпускном коллекторе (уменьшение работы выталкивания и улучшение продувки цилиндра) с выигрышем от снижения пульсаций давления перед турбиной, что повышает КПД последней.

Рисунок 3 - Система наддува с преобразователем импульсов: 1 - патрубок; 2 - сопла; 3 - камера; 4 - диффузор; 5 - трубопровод

В этом случае выпускные газы по патрубкам 1 (рисунок 3) подводятся через сопла 2, в один трубопровод, объединяющий выпуски из цилиндров, фазы которых не накладываются одна на другую. В определенный момент времени импульс давления в одном из трубопроводов достигает максимума. При этом максимальной становится и скорость истечения газа из сопла, соединенного с этим трубопроводом, что приводит вследствие эффекта эжекции к разрежению в другом трубопроводе и тем самым облегчает продувку цилиндров, присоединенных к нему. Процесс истечения из сопел повторяется с большой частотой, поэтому в камере 3, которая выполняет роль смесителя и демпфера, образуется более или менее равномерный поток, кинетическая энергия которого в диффузоре 4 (происходит снижение скорости) преобразуется в потенциальную за счет повышения давленияе. Из трубопровода 5 газы поступают в турбину при почти постоянном давлении. Более сложная конструктивная схема преобразователя импульсов, состоящего из специальных сопел на концах выпускных патрубков, объединяемых общим диффузором, показана на рисунок 4.

Течение в выпускном трубопроводе характеризуется выраженной нестационарностью, вызванной периодичностью самого процесса выпуска, и нестационарностью параметров газа на границах «выпускной трубопровод -цилиндр» и перед турбиной. Поворот канала, излом профиля и периодическое изменение его геометрических характеристик на входном участке клапанной щели служат причиной отрыва пограничного слоя и образования обширных застойных зон, размеры которых изменяются во времени. В застойных зонах образуется возвратное течение с крупномасштабными пульсирующими вихрями, которые взаимодействуют с основным течением в трубопроводе и в значительной степени определяют расходные характеристики каналов . Нестационарность потока проявляется в выпускном канале и при стационарных граничных условиях (при фиксированном клапане) в результате пульсации застойных зон. Размеры нестационарных вихрей и частоту их пульсаций достоверно можно определить только экспериментальными методами.

Сложность экспериментального изучения структуры нестационарных вихревых потоков вынуждает конструкторов и исследователей пользоваться при выборе оптимальной геометрии выпускного канала методом сравнения между собой интегральных расходных и энергетических характеристик потока, получаемых обычно при стационарных условиях на физических моделях, то есть при статической продувке. Однако обоснования достоверности таких исследований не приводится.

В работе представлены экспериментальные результаты изучения структуры потока в выпускном канале двигателя и проведен сравнительный анализ структуры и интегральных характеристик потоков при стационарных и нестационарных условиях.

Результаты испытаний большого числа вариантов выпускных каналов свидетельствуют о недостаточной эффективности обычного подхода к профилированию, основанного на представлениях о стационарном течении в коленах труб и коротких патрубков. Нередки случаи несоответствия прогнозируемых и действительных зависимостей расходных характеристик от геометрии канала .

Измерение угла поворота и частоты вращения распределительного вала

Следует отметить, что максимальные отличия значений тр, определенных в центре канала и около его стенки (разброс по радиусу канала) наблюдаются в контрольных сечениях, близких к входу в исследуемый канал и достигают 10,0 % от ipi. Таким образом, если вынужденные пульсации потока газа для 1Х до 150 мм были бы с периодом много меньшим, чем ipi = 115 мс, то течение следовало бы характеризовать, как течение с высокой степенью нестационарности. Это свидетельствует о том, что переходный режим течения в каналах энергетической установки еще не завершился, а на течение уже оказывает воздействие очередное возмущение. И напротив, если пульсации течения были бы с периодом много большим, чем Тр, то течение следовало бы считать квазистационарным (с низкой степенью нестационарности). В этом случае до возникновения возмущения переходный гидродинамический режим успевает завершиться, а течение выровняться. И наконец, в случае, если бы период пульсаций потока был близким к значению Тр, то течение следовало бы характеризовать как умеренно нестационарное с нарастающей степенью нестационарности.

В качестве примера возможного использования предложенных для оценки характерных времен, рассмотрено течение газа в выпускных каналах поршневых ДВС. Сначала обратимся к рисунку 17, на котором изображены зависимости скорости потока wx от угла поворота коленвала ф (рисунок 17, а) и от времени т (рисунок 17, б). Данные зависимости получены на физической модели одноцилиндрового ДВС размерности 8,2/7,1. Из рисунка видно, что представление зависимости wx = f (ф) является малоинформативным, поскольку недостаточно точно отражает физическую сущность процессов, происходящих в выпускном канале. Однако именно в такой форме данные графики принято представлять в области двигателестроения. На наш взгляд более корректно использовать для анализа временные зависимости wx =/(т).

Проанализируем зависимость wx =/(т) для п = 1500 мин"1 (рисунок 18). Как видно, при данной частоте вращения коленвала длительность всего процесса выпуска составляет 27,1 мс. Переходный гидродинамический процесс в выпускном канале начинается после открытия выпускного клапана. При этом можно выделить наиболее динамичный участок подъема (интервал времени, в течение которого происходит резкий рост скорости потока), длительность которого составляет 6,3 мс. После чего рост скорости потока сменяется его спадом. Как было показано ранее (рисунок 15), для данной конфигурации гидравлической системы время релаксации составляет 115-120 мс, т. е. значительно больше, чем продолжительность участка подъема. Таким образом, следует считать, что начало выпуска (участок подъема) происходит с высокой степенью нестационарности. 540 ф, град ПКВ 7 а)

Газ подавался из общей сети по трубопроводу, на котором установлен манометр 1 для контроля давления в сети и вентиль 2, для регулирования расхода. Газ поступал в бак-ресивер 3 объемом 0,04 м3, в нем была размещена выравнивающая решетка 4 для гашения пульсаций давления. Из бака-ресивера 3 газ по трубопроводу подавался в цилиндр-дутьевую камеру 5, в которой был установлен хонейкомб 6. Хонейкомб представлял собой тонкую решетку, и предназначался для гашения остаточных пульсаций давления. Цилиндр-дутьевая камера 5 была прикреплена к блоку цилиндров 8, при этом внутренняя полость цилиндр-дутьевой камеры совмещалась с внутренней полостью головки блока цилиндров.

После открытия выпускного клапана 7 газ из имитационной камеры выходил через выпускной канал 9 в измерительный канал 10.

На рисунке 20 более подробно показана конфигурация выпускного тракта экспериментальной установки с указанием мест установки датчиков давления и зондов термоанемометра.

В связи ограниченным количеством информации по динамике процесса выпуска в качестве исходной геометрической базы был выбран классический прямой выпускной канал с круглым поперечным сечением: к головке блока цилиндров 2 была прикреплена на шпильках опытная выпускная труба 4, длина трубы составляла 400 мм, а диаметром 30 мм. В трубе было просверлено три отверстия на расстояниях L\, Ьг и Ьъ соответственно 20,140 и 340 мм для установки датчиков давления 5 и датчиков термоанемометра 6 (рисунок 20).

Рисунок 20 - Конфигурация выпускного канала экспериментальной установки и места установки датчиков: 1 - цилиндр - дутьевая камера; 2 - головка блока цилиндров; 3 - выпускной клапан; 4 - опытная выпускная труба; 5 - датчики давления; 6 - датчики термоанемометра для измерения скорости потока; L - длина выпускной трубы; Ц_3- расстояния до мест установки датчиков термоанемометра от выпускного окна

Система измерений установки позволяла определять: текущий угол поворота и частоту вращения коленвала, мгновенный расход, мгновенный коэффициент теплоотдачи, избыточное давление потока. Методики определения этих параметров описаны ниже. 2.3 Измерение угла поворота и частоты вращения распределительного

Для определения частоты вращения и текущего угла поворота распределительного вала, а также момента нахождения поршня в верхней и нижней мертвых точках был применен тахометрический датчик, схема установки, которого представлена на рисунке 21, так как перечисленные выше параметры необходимо однозначно определять при исследовании динамических процессов в ДВС. 4

Тахометрический датчик состоял из зубчатого диска 7, который имел только два зуба расположенных друг напротив друга. Диск 1 был установлен с на вал электродвигателя 4 так, чтобы один из зубьев диска соответствовал положению поршня в верхней мертвой точке, а другой соответственно нижней мертвой точке и крепился к валу помощью муфты 3. Вал электродвигателя и распределительный вал поршневого двигателя были соединены ременной передачей.

При прохождении одного из зубьев вблизи от индуктивного датчика 4, закрепленного на штативе 5, на выходе из индуктивного датчика образуется импульс напряжения. С помощью этих импульсов можно определить текущее положение распределительного вала и соответственно определить положение поршня. Чтобы сигналы, соответствующие НМТ и ВМТ, отличались, друг от друга зубья были выполнены отличной друг от друга конфигурации, за счет чего сигналы на выходе из индуктивного датчика имели различную амплитуду. Сигнал, получаемый на выходе из индуктивного датчика, показан на рисунке 22: импульс напряжения меньшей амплитуды соответствует положению поршня в ВМТ, а импульс более высокой амплитуды соответственно положению в НМТ.

Газодинамика и расходные характеристики процесса выпуска поршневого двигателя внутреннего сгорания с наддувом

В классической литературе по теории рабочих процессов и конструированию ДВС турбокомпрессор в основном рассматривается в качестве наиболее эффективный способ форсирования двигателя, за счет увеличения количества воздуха, поступающего в цилиндры двигателя.

Необходимо отметить, что в литературных источниках крайне редко рассматривается влияние турбокомпрессора на газодинамические и теплофизические характеристики потока газов выпускном трубопроводе. В основном в литературе турбину турбокомпрессора рассматривают с упрощениями, как элемент системы газообмена, который оказывает гидравлическое сопротивление на поток газов на выходе из цилиндров. Однако, очевидно, что турбина турбокомпрессора играет важную роль в формировании потока отработавших газов и оказывает существенное влияние на гидродинамические и теплофизические характеристики потока. В данном разделе рассмотрены результаты исследования влияния турбины турбокомпрессора на гидродинамические и теплофизические характеристики потока газа в выпускном трубопроводе поршневого двигателя.

Исследования проводились на экспериментальной установке, которая была описана ранее, во второй главе, главным изменением является установка турбокомпрессора типа ТКР-6 с радиально - осевой турбиной (рисунки 47 и 48).

В связи с влиянием давления отработавших газов в выпускном трубопроводе на рабочий процесс турбины, закономерности изменения данного показателя широко изучены. Сжатый

Установка турбины турбокомпрессора в выпускной трубопровод оказывает сильное влияние на величину давления и скорости потока в выпускном трубопроводе, что наглядно видно из графиков зависимости давления и скорости потока в выпускном трубопроводе с турбокомпрессором от угла поворота коленвала (рисунки 49 и 50). Сравнивая данные зависимости с аналогичными зависимостями для выпускного трубопровода без турбокомпрессора при аналогичных условиях видно, что установка турбины турбокомпрессора в выпускной трубопровод приводит к возникновению большого количества пульсаций на всем протяжении всего такта выпуска, вызванных действием лопаточных элементов (соплового аппарата и рабочего колеса) турбины. Рисунок 48 - Общий вид установки с турбокомпрессором

Еще одной характерной особенностью данных зависимостей является значительное повышение амплитуды колебаний давления и значительное снижение амплитуды колебания скорости в сравнении с исполнением выпускной системы без турбокомпрессора. Например, на при частоте вращения коленвала 1500 мин"1 и первоначальном избыточном давлении в цилиндре 100 кПа максимальное значение давления газа в трубопроводе с турбокомпрессором в 2 раза выше, а скорость в 4,5 раза ниже, чем в трубопроводе без турбокомпрессора. Увеличение давления и снижение скорости в выпускном трубопроводе, вызвано сопротивлением, создаваемым турбиной. Стоит отметить, что максимальное значение давления в трубопроводе с турбокомпрессором смещено относительно максимального значения давления в трубопроводе без турбокомпрессора на величину до 50 градусов поворота коленвала. so

Зависимости локальных (1Х =140 мм) избыточного давления рх и скорости потока wx в выпускном трубопроводе круглого сечения поршневого ДВС с турбокомпрессором от угла поворота коленвала р при избыточном давлении выпуска ръ = 100 кПа для различных частот вращения коленвала:

Было установлено, что в выпускном трубопроводе с турбокомпрессором максимальные значения скорости потока, ниже, чем в трубопроводе без него. Стоит отметить также, что при этом происходит смещение момента достижения максимального значения скорости потока в сторону увеличения угла поворота коленвала, что характерно для всех режимов работы установки. В случае с турбокомпрессором пульсации скорости наиболее выражены при низких частотах вращения коленвала, что так же характерно и в случае без турбокомпрессора.

Аналогичные особенности характерны и для зависимости рх =/(р).

Необходимо отметить, что после закрытия выпускного клапана скорость газа в трубопроводе на всех режимах не снижается до нуля. Установка турбины турбокомпрессора в выпускном трубопроводе приводит к сглаживанию пульсаций скорости потока на всех режимах работы (особенно при начальном избыточном давлении 100 кПа), как во время такта выпуска, так и после его окончания.

Стоит отметить так же, что в трубопроводе с турбокомпрессором интенсивность затухания колебаний давления потока после закрытия выпускного клапана выше, чем без турбокомпрессора

Стоит предположить, что к описанным выше изменениям газодинамических характеристик потока при установке в выпускной трубопровод турбины турбокомпрессора, приводит перестройка потока в выпускном канале, что неизбежно должно привести к изменениям теплофизических характеристик процессе выпуска.

В целом зависимости изменения давления трубопроводе в ДВС с наддувом хорошо согласуются с полученными ранее .

На рисунке 53 изображены графики зависимости массового расхода G через выпускной трубопровод от частоты вращения коленвала п при различных значениях избыточного давления ръ и конфигураций выпускной системы (с турбокомпрессором и без него). Данные графики были получены с помощью методики описанной в .

Из графиков, изображенных на рисунке 53 видно, что для всех значений начального избыточного давления массовый расход G газа в выпускном трубопроводе примерно одинаков как при наличии ТК, так и без него.

На некоторых режимах работы установки отличие расходных характеристик незначительно превышают систематическую погрешность, которая для определения массового расхода потока составляет примерно 8-10 %. 0,0145 G . кг/с

Для трубопровода с квадратным поперечным сечением

Система выхлопа с эжекцией функционирует следующим образом. Отработавшие газы в систему выхлопа поступают из цилиндра двигателя в канал в головке цилиндра 7, откуда проходят в выпускной коллектор 2. В выпускном коллекторе 2 установлена эжекционная трубка 4, в которую воздух подается через электропневмоклапан 5. Такое исполнение позволяет создать область разряжения сразу за каналом в головке цилиндра .

Для того чтобы эжекционная трубка не создавала значительного гидравлического сопротивления в коллекторе выпускном, ее диаметр не должен превышать 1/10 диаметра этого коллектора. Это также необходимо для того, чтобы в выпускном коллекторе не создавался критический режим, и не возникало явление запирания эжектора . Положение оси эжекционной трубки относительно оси выпускного коллектора (эксцентриситет) выбирается в зависимости от конкретной конфигурации системы выхлопа и режима работы двигателя. При этом критерием эффективности служит степень очистки цилиндра от отработавших газов.

Поисковые опыты показывали, что разряжение (статическое давление), создаваемое в выпускном коллекторе 2 с помощью эжекционной трубки 4, должно составлять не менее 5 кПа. В противном случае будет происходить недостаточное выравнивание пульсирующего потока. Это может вызвать образование обратных токов в канале, что приведет к снижению эффективности продувки цилиндра, и соответственно снижению мощности двигателя. Электронный блок управления двигателем 6 должен организовать работу электропневмоклапана 5 в зависимости от частоты вращения коленвала двигателя. Для усиления эффекта эжекции на выходной конец эжекционной трубки 4 может быть установлено дозвуковое сопло.

Оказалось, что максимальные значения скорости потока в выпускном канале при постоянной эжекции значительно выше, чем без нее (до 35%). Кроме того, после закрытия выпускного клапана в выпускном канале с постоянной эжекцией скорость выходящего потока падает медленнее по сравнению с традиционным каналом, что свидетельствует о продолжающейся очистке канала от отработавших газов.

На рисунке 63 представлены зависимости местного объемного расхода Vx через выпускные каналы разного исполнения от частоты вращения коленчатого вала п. Они свидетельствуют о том, что во всем исследованном диапазоне частоты вращения коленчатого вала при постоянной эжекции возрастает объемный расход газа через систему выхлопа, что должно привести к лучшей очистке цилиндров от отработавших газов и повышению мощности двигателя.

Таким образом, проведенное исследование показало, что использование в выхлопной системе поршневого ДВС эффекта постоянной эжекции улучшает газоочистку цилиндра по сравнению с традиционными системами за счет стабилизации течения в выхлопной системе.

Основным принципиальным отличием данного способа от метода гашения пульсаций потока в выпускном канале поршневого ДВС с помощью эффекта постоянной эжекции является то, что воздух через эжекционную трубку подается в выпускной канал только во время такта выпуска. Это может быть осуществимо с помощью настройки электронного блока управления двигателем, либо применения специального блока управления, схема которого показана на рисунке 66.

Данная разработанная автором схема (рисунок 64) применяется в случае невозможности обеспечения управления процессом эжекции с помощью блока управления двигателем. Принцип работы такой схемы состоит в следующем, на маховик двигателя либо на шкив распределительного вала должны быть установлены специальные магниты, положение которых бы соответствовало моментам открытия и закрытия выпускных клапанов двигателя. Магниты должны быть установлены разными полюсами относительно биполярного датчика Холла 7, который в свою очередь должен находиться в непосредственной близости от магнитов. Проходя рядом с датчиком магнит, установленный соответственно моменту открытия выпускных клапанов, вызывает небольшой электроимпульс, который усиливается за счет блока усиления сигнала 5, и подается на электропневмоклапан, выводы которого соединены с выводами 2 и 4 блока управления, после чего он открывается и начинается подача воздуха. происходит, когда второй магнит проходит рядом с датчиком 7, после чего электропневмоклапан закрывается.

Обратимся к экспериментальным данным, которые были получены в диапазоне частот вращения коленчатого вала п от 600 до 3000 мин"1 при разных постоянных избыточных давлениях рь на выпуске (от 0,5 до 200 кПа). В опытах сжатый воздух с температурой 22-24 С в эжекционную трубку поступал из заводской магистрали. Разряжение (статическое давление) за эжекционной трубкой в системе выхлопа составляло 5 кПа.

На рисунке 65 показаны графики зависимостей местного давления рх (У =140 мм) и скорости потока wx в выпускном трубопроводе круглого поперечного сечения поршневого ДВС с периодической эжекцией от угла поворота коленчатого вала р при избыточном давлении выпуска ръ = 100 кПа для различных частотах вращения коленчатого вала.

Из данных графиков видно, что на протяжении всего такта выпуска происходит колебание абсолютного давления в выпускном тракте, максимальные значения колебаний давления достигают 15 кПа, а минимальные достигают разряжения 9 кПа. Тогда, как в классическом выпускном тракте круглого поперечного сечения эти показатели соответственно равны 13,5 кПа и 5 кПа. Стоит отметить то, что максимальное значение давления наблюдается при частоте вращения коленчатого вала 1500 мин"1, на остальных режимах работы двигателя колебания давления не достигают таких величин. Напомним. Что в исходной трубе круглого поперечного сечения наблюдался монотонный рост амплитуды колебаний давления в зависимости от увеличения частоты вращении коленчатого вала.

Из графиков зависимости местной скорости потока газа w от угла поворота коленчатого вала видно, что значения местной скорости во время такта выпуска в канале с использованием эффекта периодической эжекции выше, чем в классическом канале круглого поперечного сечения на всех режимах работы двигателя. Это свидетельствует о лучшей очистке выпускного канала.

На рисунке 66 рассмотрены графики сравнения зависимостей объемного расхода газа от частоты вращения коленвала в трубопроводе круглого поперечного сечения без эжекции и трубопроводе круглого поперечного сечения с периодической эжекцией при различных избыточных давлениях на входе в выпускной канал.

Использование резонансных выхлопных труб на моторных моделях всех классов позволяет резко повысить спортивные результаты соревнований. Однако геометрические параметры труб определяются, как правило, методом проб и ошибок, поскольку до настоящего времени не существует ясного понимания и четкого толкования процессов, происходящих в этих газодинамических устройствах. А в немногочисленных источниках информации по этому поводу приводятся противоречивые выводы, имеющие произвольную трактовку.

Для детального исследования процессов в трубах настроенного выхлопа была создана специальная установка. Она состоит из стенда для запуска двигателей, переходника мотор - труба со штуцерами для отбора статического и динамического давления, двух пьезоэлектрических датчиков, двухлучевого осциллографа С1-99, фотоаппарата, резонансной выхлопной трубы от двигателя R-15 с «телескопом» и самодельной трубы с чернением поверхности и дополнительной теплоизоляцией.

Давление в трубах в районе выхлопа определялось следующим образом: мотор выводился на резонансные обороты (26000 об/мин), данные с присоединенных к штуцерам отбора давления пьезоэлектрических датчиков выводились на осциллограф, частота развертки которого синхронизирована с частотой вращения двигателя, и осциллограмма регистрировалась на фотопленку.

После проявления пленки в контрастном проявителе изображение переносилось на кальку в масштабе экрана осциллографа. Результаты для трубы от двигателя R-15 приведены на рисунке 1 и для самодельной трубы с чернением и дополнительной теплоизоляцией - на рисунке 2.

На графиках:

Р дин - динамическое давление, Р ст - статическое давление. ОВО - открытие выхлопного окна, НМТ - нижняя мертвая точка, ЗВО - закрытие выхлопного окна.

Анализ кривых позволяет выявить распределение давления на входе резонансной трубы в функции фазы поворота коленвала. Повышение динамического давления с момента открытия выхлопного окна с диаметром выходного патрубка 5 мм происходит для R-15 приблизительно до 80°. А его минимум находится в пределах 50° - 60° от нижней мертвой точки при максимальной продувке. Повышение давления в отраженной волне (от минимума) в момент закрытия выхлопного окна составляет около 20% от максимального значения Р. Запаздывание в действии отраженной волны выхлопных газов - от 80 до 90°. Для статического давления характерно повышение в пределах 22° с «плато» на графике вплоть до 62° от момента открытия выхлопного окна, с минимумом, находящимся в 3° от момента нижней мертвой точки. Очевидно, что в случае использования аналогичной выхлопной трубы колебания продувки происходят в 3°… 20° после нижней мертвой точки, а отнюдь не в 30° после открытия выхлопного окна, как считалось ранее.

Данные исследования самодельной трубы отличаются от данных R-15. Повышение динамического давления до 65° от момента открытия выхлопного окна сопровождается минимумом, расположенным в 66° после нижней мертвой точки. При этом повышение давления отраженной волны от минимума составляет около 23%. Запаздывание в действии выхлопных газов меньше, что связано, вероятно, с увеличением температуры в теплоизолированной системе, и составляет около 54°. Колебания продувки отмечаются в 10° после нижней мертвой точки.

Сравнивая графики, можно заметить, что статическое давление в теплоизолированной трубе в момент закрытия выхлопного окна меньше, чем в R-15. Однако динамическое давление имеет максимум отраженной волны в 54° после закрытия выхлопного окна, а в R-15 этот максимум сдвинут на целых 90“! Отличия связаны с разницей в диаметрах выхлопных патрубков: на R-15, как уже указывалось, диаметр равен 5 мм, а на теплоизолированной - 6,5 мм. Кроме того, за счет более совершенной геометрии трубы R-15 коэффициент восстановления статического давления у нее больше.

Коэффициент полезного действия резонансной выхлопной трубы в значительной мере зависит от геометрических параметров самой трубы, сечения выхлопного патрубка двигателя, температурного режима и фаз газораспределения.

Применение контротражателей и подбор температурного режима резонансной выхлопной трубы позволит сместить максимум давления отраженной волны выхлопных газов к моменту закрытия выхлопного окна и таким образом резко увеличить эффективность ее действия.

1

В данной статье рассматриваются вопросы оценки влияния резонатора на наполнение двигателя. В ка-честве примера предложен резонатор – по объему равный объему цилиндра двигателя. Геометрия впуск-ного тракта вместе с резонатором была импортирована в программу FlowVision. Математическое моде-лирование было проведено с учетом всех свойств движущегося газа. Для оценки расхода через впускную систему, оценки скорости потока в системе и относительного давления воздуха в клапанной щели было проведено компьютерное моделирование, которое показало эффективность применения дополнительной емкости. Была проведена оценка изменения расхода через клапанную щель, скорости движения потока, давления и плотности потока для стандартной, модернизированной и впускной системы с рессивером. При этом увеличивается масса поступающего воздуха, снижается скорость движения потока и увеличи-вается плотность воздуха, поступающего в цилиндр, что благоприятно отражается на выходных показа-телях ДВС.

впускной тракт

резонатор

наполнение цилиндра

математическое моделирование

модернизированный канал.

1. Жолобов Л. А., Дыдыкин А. М. Математическое моделирование процессов газообмена ДВС: Монография. Н.Н.: НГСХА, 2007.

2. Дыдыкин А. М., Жолобов Л. А. Газодинамические исследования ДВС методами численного моделирования // Тракторы и сельскохозяйственные машины. 2008. № 4. С. 29-31.

3. Прицкер Д. М., Турьян В. А. Аэромеханика. М.: Оборонгиз, 1960.

4. Хайлов М. А. Расчетное уравнение колебания давления во всасывающем трубопроводе двигателя внутреннего сгорания // Тр. ЦИАМ. 1984. № 152. С.64.

5. Сонкин В. И. Исследование течения воздуха через клапанную щель // Тр. НАМИ. 1974. Вып.149. С.21-38.

6. Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики. М.: Наука,1980. С.352.

7. Рудой Б. П. Прикладная нестационарная газодинамика: Учебное пособие. Уфа: Уфимский авиационный институт,1988. С.184.

8. Маливанов М. В., Хмелев Р. Н. К вопросу разработки математического и программного обеспечения расчета газодинамических процессов в ДВС: Материалы IX Международной научно-практической конференции. Владимир, 2003. С. 213-216.

Величина крутящего момента двигателя пропорционально поступившей массе воздуха, отнесенной к частоте вращения. Повышение наполнения цилиндра бензинового ДВС путем модернизации впускного тракта приведет к увеличению давления конца впуска, улучшенному смесеобразованию, росту технико-экономических показателей работы двигателя и снижению токсичности отработавших газов.

Основные требования, предъявляемые к впускному тракту, заключаются в обеспечении минимального сопротивления на впуске и равномерном распределении горючей смеси по цилиндрам двигателя.

Обеспечение минимального сопротивления на впуске может быть достигнуто путем устранения шероховатости внутренних стенок трубопроводов, а также резких изменений направления потока и устранения внезапных сужений и расширений тракта.

Значительное влияние на наполнение цилиндра обеспечивают различные виды наддува. Самый простой вид наддува заключается в использовании динамики поступающего воздуха. Большой объём ресивера частично создает резонансные эффекты в определённом диапазоне частот вращения, которые приводят к улучшению наполнения. Однако они имеют, как следствие, динамические недостатки, например, отклонения в составе смеси при быстром изменении нагрузки. Почти идеальное протекание крутящего момента обеспечивает переключение впускной трубы, при котором, например, в зависимости от нагрузки двигателя, частоты вращения и положения дроссельной заслонки возможны вариации:

Длины пульсационной трубы;

Переключение между пульсационными трубами различной длины или диаметра;
- выборочное отключение отдельной трубы одного цилиндра при наличии большого их количества;
- переключение объёма ресивера.

При резонансном наддуве группы цилиндров с одинаковым интервалом вспышек присоединяют короткими трубами к резонансным ресиверам, которые через резонансные трубы соединяются с атмосферой или же со сборным ресивером, действующим в качестве резонатора Гёльмгольца. Он представляет собой сосуд сферической формы с открытой горловиной. Воздух в горловине является колеблющейся массой, а объем воздуха в сосуде играет роль упругого элемента. Разумеется, такое разделение справедливо лишь приближенно, так как некоторая часть воздуха в полости обладает инерционным сопротивлением. Однако при достаточно большой величине отношения площади отверстия к площади сечения полости точность такого приближения вполне удовлетворительна. Основная часть кинетической энергии колебаний оказывается сосредоточенной в горловине резонатора, где колебательная скорость частиц воздуха имеет наибольшую величину.

Резонатор впуска устанавливается между дроссельной заслонкой и цилиндром. Он начинает действовать, когда дроссель прикрыт достаточно, чтобы его гидравлическое сопротивление стало сопоставимым с сопротивлением канала резонатора. При движении поршня вниз горючая смесь поступает в цилиндр двигателя не только из-под дросселя, но и из ёмкости. При уменьшении разрежения резонатор начинает всасывать в себя горючую смесь. Сюда же пойдет часть, и довольно большая, обратного выброса.
В статье анализируется движение потока во впускном канале 4-х тактного бензинового ДВС при номинальной частоте вращения коленчатого вала на примере двигателя ВАЗ-2108 при частоте вращения коленчатого вала n=5600мин-1.

Данная исследовательская задача решалась математическим путём с использованием программного комплекса для моделирования газо-гидравлических процессов. Моделирование проведено с использованием программного комплекса FlowVision. Для этой цели получена и импортирована геометрия (под геометрией понимаются внутренние объемы двигателя - впускные и выпускные трубопроводы, надпоршневой объем цилиндра) при помощи различных стандартных форматов файлов. Это позволяет использовать САПР SolidWorks для создания расчетной области.

Под областью расчета понимается объем, в котором определены уравнения математической модели, и граница объема, на которой определены граничные условия, затем сохранить полученную геометрию в поддерживаемом FlowVision формате и использовать ее при создании нового расчетного варианта.

В данной задаче использовался формат ASCII, binary, в расширении stl, тип StereoLithographyformat с угловым допуском 4.0 градуса и отклонением 0,025 метра для повышения точности получаемых результатов моделирования.

После получения трехмерной модели расчетной области задается математическая модель (совокупность законов изменения физических параметров газа для данной задачи).

В данном случае принято существенно дозвуковое течение газа при малых числах Рейнольдса, которое описывается моделью турбулентного течения полностью сжимаемого газа с использованием стандартной k-e модели турбулентности. Данная математическая модель описывается системой, состоящей из семи уравнений: два уравнения Навье - Стокса, уравнения неразрывности, энергии, состояния идеального газа, массопереноса и уравнения для кинетической энергии турбулентных пульсаций .

(2)

Уравнение энергии (полная энтальпия)

Уравнение состояния идеального газа:

Турбулентные составляющие связаны с остальными переменными через величину турбулентной вязкости , которая вычисляется в соответствии со стандартной k-ε моделью турбулентности.

Уравнения для k и ε

турбулентная вязкость:

константы, параметры и источники:

(9)

(10)

σk =1; σε =1,3; Сμ =0,09; Сε1 =1,44; Сε2 =1,92

Рабочим веществом в процессе впуска является воздух, в данном случае рассматриваемый как идеальный газ. Начальные значения параметров задаются для всей расчетной области: температура, концентрация, давление и скорость. Для давления и температуры начальные параметры равны опорным. Скорость внутри расчетной области по направлениям X, Y, Z равна нулю. Переменные температура и давление во FlowVision представляются относительными значениями, абсолютные значения которых вычисляются по формуле :

fa = f + fref, (11)

где fa - абсолютное значение переменной, f - рассчитываемое относительное значение переменной, fref - опорная величина.

Граничные условия задаются для каждой из расчетных поверхностей. Под граничными условиями следует понимать совокупность уравнений и законов, характерных для поверхностей расчетной геометрии. Граничные условия необходимы для определения взаимодействия расчетной области и математической модели. На странице для каждой поверхности указывается конкретный тип граничного условия. На входные окна впускного канала устанавливается тип граничного условия - свободный вход. На остальные элементы - стенка- граница, не пропускающая и не передающая расчетные параметры далее расчетной области. Кроме всех вышеперечисленных граничных условий, необходимо учитывать граничные условия на подвижных элементах, включенных в выбранную математическую модель.

К подвижным деталям относятся впускной и выпускной клапана, поршень. На границах подвижных элементов определяем тип граничного условия стенка.

Для каждого из подвижных тел задается закон движения. Изменение скорости поршня определяется формулой . Для определения законов движения клапанов были сняты кривые подъема клапана через 0,50 с точностью 0,001 мм. Затем рассчитывались скорость и ускорения движения клапана. Полученные данные преобразованы в динамические библиотеки (время - скорость).

Следующий этап в процессе моделирования - генерирование расчетной сетки. FlowVision использует локально адаптивную расчетную сетку. Вначале создается начальная расчетная сетка, а затем указываются критерии измельчения сетки, в соответствии с которыми FlowVision разбивает ячейки начальной сетки до нужной степени. Адаптация выполнена как по объему проточной части каналов, так и по стенкам цилиндра. В местах с возможной максимальной скоростью создаются адаптации с дополнительным измельчением расчетной сетки. По объему измельчение проведено до 2 уровня в камере сгорания и до 5 уровня в клапанных щелях, по стенкам цилиндра адаптация выполнена до 1 уровня. Это необходимо для увеличения шага интегрирования по времени при неявном методе расчета. Связано это с тем, что шаг по времени определяется как отношение размера ячейки к максимальной скорости в ней.

Перед началом постановки на расчет созданного варианта необходимо задать параметры численного моделирования. При этом задается время продолжения расчета равное одному полному циклу работы ДВС - 7200 п.к.в., число итераций и частота сохранения данных варианта расчета. Для последующей обработки сохраняются определенные этапы расчета. Задается шаг по времени и опции процесса расчета. В данной задаче требуется задание шага по времени - способ выбора: неявная схема с максимальным шагом 5е-004с, явное число CFL - 1. Это означает, что шаг по времени определяет сама программа в зависимости от сходимости уравнений давления.

В постпроцессоре настраиваются и задаются интересующие нас параметры визуализации полученных результатов. Моделирование позволяет получать требуемые слои визуализации после завершения основного расчета, основываясь на сохраняемых с определенной периодичностью этапах расчета. Кроме того, постпроцессор позволяет передавать полученные числовые значения параметров исследуемого процесса в виде информационного файла во внешние редакторы электронных таблиц и получать зависимость от времени таких параметров, как скорость, расход, давление и т.д.

На рис.1 представлена установка ресивера на впускной канал ДВС. Объем ресивера равен объему одного цилиндра двигателя. Ресивер установлен максимально близко к впускному каналу.

Рис. 1. Модернизированная с ресивером расчетная область в CADSolidWorks

Собственная частота резонатора Гельмгольца равна:

(12)

где F - частота, Гц; C0 - скорость звука в воздухе (340 м/с); S - сечение отверстия, м2; L - длина трубы, м; V - объем резонатора, м3.

Для нашего примера имеем следующие значения:

d=0,032 м, S=0,00080384 м2, V=0,000422267 м3, L=0,04 м.

После расчета F=374 Гц, что соответствует частоте вращения коленчатого вала n=5600мин-1.

После постановки на расчет созданного варианта и после задания параметров численного моделирования получены следующие данные: расхода, скорости, плотности, давления, температуры газового потока во впускном канале ДВС по углу поворота коленчатого вала.

Из представленного графика (рис. 2) по расходу потока в клапанной щели видно, что максимальной расходной характеристикой обладает модернизированный канал с ресивером. Значение расхода выше на 200 гр/сек. Повышение наблюдается на протяжении 60 г.п.к.в.

С момента открытия впускного клапана (348 г.п.к.в.) скорость потока (рис. 3) начинает расти с 0 до 170м/с (у модернизированного впускного канала 210 м/с, с ресивером -190м/с) в интервале до 440-450 г.п.к.в. В канале с ресивером значение скорости выше, чем в стандартном примерно на 20 м/с начиная с 430-440 г.п.к.в. Числовое значение скорости в канале с ресивером значительно более ровное, чем у модернизированного впускного канала, на протяжении открытия впускного клапана. Далее наблюдается значительное снижение скорости потока, вплоть до закрытия впускного клапана.

Рис. 2. Расход газового потока в клапанной щели для каналов стандартного, модернизированного и с ресивером при n=5600 мин-1: 1 - стандартный, 2 - модернизированный, 3 - модернизированный с ресивером

Рис. 3. Скорость движения потока в клапанной щели для каналов стандартного, модернизированного и с ресивером при n=5600 мин-1: 1 - стандартный, 2 - модернизированный, 3 - модернизированный с ресивером

Из графиков относительного давления (рис. 4) (за ноль принято атмосферное давление, Р=101000 Па) следует, что значение давления в модернизированном канале выше, чем в стандартном, на 20 КПа при 460-480 г.п.к.в. (связано с большим значением скорости потока). Начиная с 520 г.п.к.в значение давления выравнивается, чего нельзя сказать о канале с ресивером. Значение давления выше, чем в стандартном, на 25 КПа, начиная с 420-440 г.п.к.в вплоть до закрытия впускного клапана.

Рис. 4. Давление потока в стандартном, модернизированном и канале с ресивером при n=5600 мин-1(1 - стандартный канал, 2 - модернизированный канал, 3 - модернизированный канал с ресивером)

Рис. 5. Плотность потока в стандартном, модернизированном и канале с ресивером при n=5600 мин-1(1 - стандартный канал, 2 - модернизированный канал, 3 - модернизированный канал с ресивером)

Плотность потока в районе клапанной щели представлена на рис. 5.

В модернизированном канале с ресивером, значение плотности ниже на 0,2 кг/м3 начиная с 440 г.п.к.в. в сравнении со стандартным каналом. Это связано с большими давлениями и скоростями газового потока.

Из анализа графиков можно сделать следующий вывод: канал улучшенной формы обеспечивает лучшее наполнение цилиндра свежим зарядом благодаря снижению гидравлического сопротивления впускного канала. При росте скорости поршня в момент открытия впускного клапана форма канала не оказывает значительного влияния на скорость, плотность и давление внутри впускного канала, объясняется это тем, что в этот период показатели процесса впуска в основном зависят от скорости движения поршня и площади проходного сечения клапанной щели (в данном расчете изменена только форма впускного канала), но все меняется кардинальным образом в момент замедления движения поршня. Заряд в стандартном канале менее инертен и значительнее «растягивается» по длине канала, что в совокупности дает меньшее наполнение цилиндра в момент снижения скорости движения поршня. Вплоть до закрытия клапана процесс протекает под знаменателем уже полученной скорости потока (поршень придает начальную скорость потоку надклапанного объема, при снижении скорости поршня значительную роль на наполнение оказывает инерционная составляющая газового потока, обусловленная снижением сопротивления движению потока), модернизированный канал значительно меньше препятствует прохождению заряда. Это подтверждается более высокими показателями скорости, давления.

Во впускном канале с ресивером, за счет дополнительной подпитки заряда и резонансных явлений, в цилиндр ДВС поступает значительно большая масса газовой смеси, что обеспечивает более высокие технические показатели работы ДВС. Прирост давления конца впуска окажет значительное влияние на увеличение технико-экономических и экологических показателей работы ДВС.

Рецензенты:

Гоц Александр Николаевич, д.т.н., профессор кафедры тепловых двигателей и энергетических установок Владимирского государственного университета Министерства образования и науки, г. Владимир.

Кульчицкий Алексей Рэмович, д.т.н., профессор, заместитель главного конструктора ООО ВМТЗ, г. Владимир.

Библиографическая ссылка

Жолобов Л. А., Суворов Е. А., Васильев И. С. ВЛИЯНИЕ ДОПОЛНИТЕЛЬНОЙ ЕМКОСТИ ВО ВПУСКНОЙ СИСТЕМЕ НА НАПОЛНЕНИЕ ДВС // Современные проблемы науки и образования. – 2013. – № 1.;
URL: http://science-education.ru/ru/article/view?id=8270 (дата обращения: 25.11.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» Страница: (1) 2 3 4 ... 6 » Я уже писал о резонансных глушителях - "дудках" и "маффлерах/муфлерах" (моделистами используется несколько терминов, производных от английского "muffler" - глушитель, сурдинка и т.д). Почитать об этом можно в моей статье "А вместо сердца - пламенный мотор".

Наверное, стоит поговорить подробнее о выхлопных системах ДВС в целом, чтобы научиться разделять "мух от котлет" в этой не простой для понимания области. Не простой с точки зрения физических процессов, происходящих в глушителе после того, как двигатель уже завершил очередной рабочий такт, и, казалось бы, сделал свое дело.
Далее речь пойдет о модельных двухтактных двигателях, но все рассуждения верны и для четырехтактников, и для двигателей "не модельных" кубатур.

Напомню, что далеко не каждый выхлопной тракт ДВС, даже построенный по резонансной схеме, может дать прирост мощности или крутящего момента двигателя, равно как и уменьшить уровень его шума. По большому счету, это два взаимоисключающих требования, и задача конструктора выхлопной системы обычно сводится к поиску компромисса между шумностью ДВС, и его мощностью в том или ином режиме работы.
Это обусловлено несколькими факторами. Рассмотрим "идеальный" двигатель, у которого внутренние потери энергии на трение скольжения узлов равны нулю. Также не будем учитывать потери в подшипниках качения и потери, неизбежные при протекании внутренних газодинамических процессов (всасывание и продувка). В итоге, вся энергия, высвобождаемая при сгорании топливной смеси, будет расходоваться на:
1) полезную работу движителя модели (пропеллер, колесо и т.д. Рассматривать КПД этих узлов не будем, это отдельная тема).
2) потери, возникающие при еще одной цикличной фазе процесса работы ДВС - выхлопе.

Именно потери выхлопа стоит рассмотреть более детально. Подчеркну, что речь идет не о такте "рабочий ход" (мы условились, что двигатель "внутри себя" идеален), а о потерях на "выталкивание" продуктов сгорания топливной смеси из двигателя в атмосферу. Они определяются, в основном, динамическим сопротивлением самого выхлопного тракта - всего того, что присоединяется к картеру мотора. От входного до выходного отверстий "глушителя". Надеюсь, не надо никого убеждать в том, что чем меньше сопротивление каналов, по которым "отходят" газы из двигателя, тем меньше нужно будет потратить усилий на это, и тем быстрее пройдет процесс "газоотделения".
Очевидно, что именно фаза выхлопа ДВС является основной в процессе шумообразования (забудем о шумах, возникающем при всасывании и при горении топлива в цилиндре, равно как и о механических шумах от работы механизма - у идеального ДВС механических шумов просто не может быть). Логично предположить, что в таком приближении общий КПД ДВС будет определяться соотношением между полезной работой, и потерями на выхлоп. Соответственно, уменьшение потерь на выхлоп будет повышать КПД двигателя.

Куда расходуется энергия, теряемая при выхлопе? Естественно, она преобразуется в акустические колебания окружающей среды (атмосферы), т.е. в шум (разумеется, имеет место и разогрев окружающего пространства, но мы об этом пока умолчим). Место возникновения этого шума - срез выхлопного окна двигателя, где происходит скачкообразное расширение отработанных газов, которое и инициирует акустические волны. Физика этого процесса очень проста: в момент открытия выхлопного окна в маленьком объеме цилиндра находится большая порция сжатых газообразных остатков продуктов сгорания топлива, которая при выходе в окружающее пространство быстро и резко расширяется, при этом и возникает газодинамический удар, провоцирующий последующие затухающие акустические колебания в воздухе (вспомните хлопок, возникающий при откупоривании бутылки шампанского). Для уменьшения этого хлопка достаточно увеличить время истечения сжатых газов из цилиндра (бутылки), ограничивая сечение выхлопного окна (плавно приоткрывая пробку). Но такой способ снижения шума не приемлем для реального двигателя, у которого, как мы знаем, мощность прямо зависит от оборотов, следовательно - от скорости всех протекающих процессов.
Можно уменьшить шум выхлопа другим способом: не ограничивать площадь сечения выхлопного окна и времени истечения выхлопных газов, но ограничить скорость их расширения уже в атмосфере. И такой способ был найден.

Еще в 30-х годах прошлого века спортивные мотоциклы и автомобили начали оснащать своеобразными конусными выхлопными трубами с маленьким углом раскрыва. Эти глушители получили название "мегафонов". Они незначительно снижали уровень выхлопного шума ДВС, и в ряде случаев позволяли, также незначительно, увеличить мощность двигателя за счет улучшения очистки цилиндра от остатков отработанных газов за счет инерционности газового столба, движущегося внутри конусной выхлопной трубы.

Расчеты и практические опыты показали, что оптимальный угол раскрыва мегафона близок к 12-15 градусам. В принципе, если сделать мегафон с таким углом раскрыва очень большой длины, он будет достаточно эффективно гасить шум двигателя, почти не снижая его мощности, но на практике такие конструкции не реализуемы из-за очевидных конструктивных недостатков и ограничений.

Еще один способ снижения шума ДВС заключается в минимизации пульсаций отработанных газов на выходе выхлопной системы. Для этого выхлоп производится не непосредственно в атмосферу, а в промежуточный ресивер достаточного объема (в идеале - не менее чем в 20 раз превышающий рабочий объем цилиндра), с последующим выпуском газов через относительно маленькое отверстие, площадь которого может быть в несколько раз меньше площади выхлопного окна. Такие системы сглаживают пульсирующий характер движения газовой смеси на выходе из двигателя, превращая его в близкий к равномерно-поступательному на выходе глушителя.

Напомню, что речь в данный момент идет о глушащих системах, не увеличивающих газодинамическое сопротивление выхлопным газам. Поэтому не буду касаться всевозможных ухищрений типа металлических сеток внутри глушащей камеры, перфорированных перегородок и труб, которые, разумеется, позволяют уменьшить шум двигателя, но в ущерб его мощности.

Следующим шагом в развитии глушителей были системы, состоящие из различных комбинаций описанных выше способов глушения шума. Скажу сразу, в большинстве своем они далеки от идеала, т.к. в той или иной степени увеличивают газодинамическое сопротивление выхлопного тракта, что однозначно приводит к снижению мощности двигателя, передаваемой на движитель.

//
Страница: (1) 2 3 4 ... 6 »

Поделиться: